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ABSTRACT

The main purpose of this paper is the implementation of

the classification and regression trees (CART) programs on

the NPS Computer System. An additional goal is the fore-

casting of officer attrition rates for the highly cross-

classified manpower structure of the U.S. Marine Corps. The

use of this program requires a deep understanding of the

algorithmic structure of CART and the user must experiment

with it in order to develop a reasonable approach to the

management of the computer's memory. The complete set of

commands required to run the programs, and the complete

results, are included.
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I. INTRODUCTION

A. GENERAL

The main purpose of this paper is the implementation of

the CART (Classification and Regression Trees) programs on

the NPS computer system (IBM 3030) by describing the proce-

dure for CART Version 1.1, which is being distributed as of

December 20, 1984, and the application of these programs to

real data; the Marine Corps officer manpower data.

A summary of necessary graph theoretic terminology is

presented in this introduction, but first we describe the

contents of each chapter.

Chapter II is concerned with the goals of the CART pro-

grams, and the kinds of problems they solve. In particular,

the classification problem is introduced; the concepts of

learning samples and classifiers are discussed.

Chapter III is concerned with the idea of the CART tech-

nique. The sequence of solution steps followed by the CART

program is explained. It is instructive to explain first the

initial algorithm that was followed and then to present the

modified algorithm which is being used now. A numerical

example is worked out in detail in this chapter so as to

better explain the sequence of solution steps.

Chapter IV introduces the Marine Corps officer manpower

attrition rate data. The forecasting of these rates is the

8



main application of this paper. After describing the data

structure and source, the steps followed for data preparation

and extraction of samples are presented.

Chapter V, the main chapter of this paper, is concerned

with the implementation of the CART programs on the NPS com-

puter system. It contains the commands and files required to

run these programs. Typical examples are presented in

detail. The content of output forms, notation, and special

terms are explained.

Chapter VI is concerned with the results obtained from

our application to Marine Corps manpower data.

Chapter VII contains our evaluation to the CART programs

based on more then 50 runs of these programs.

Finally, the Appendix includes all the complete outputs

of the CART programs when the Marine Corps manpower data

files were used as input files.

B. BACKGROUND

The CART programs use the binary tree as a main data

structure. The following lines define what we mean by a

binary tree. These definitions are standard. For further

information, see any good text on graph theory.

A "graph" G=[V,E] consists of a vertex set V and an edge

set E. Either G is undirected, in which case every edge is

an unordered pair of distinct vertices, or G is directed,



in which case every edge is an ordered pair of distince

vertices.

A "path" in a graph from vertex V
(

to vertex Vk is a

list of vertices [V. ,V2#...»V|
<
] such that (Vj , V| + )

) is an

edge for is {l,...,k-l } . The path contains vertex Vj for

is: {1, ... ,k} and edge ( v j , v
j + (

) for ie {1, . .

.

, k-1} and avoids

all other vertices and edges. Vertices V| and V^ are the

ends of the path. The path is "simple" if all its vertices

are distinct. If the graph is directed, the path is a

"cycle" if k>l and V| =V[< , and a "simple cycle" if in addition

V| , V2 , . . . /

V

k _| are distinct. If the graph is undirected, the

path is a cycle if k>l, V| =V|
<
and no edge is repeated. It is

a simple cycle if in addition V| , V2 , . . . , V^.j are distinct. A

graph without cycles is a cyclic. If there is a path from a

vertex v to a vertex w then w is reachable from v.

An undirected graph G is "connected" if every vertex

is reachable from every other vertex and "disconnected"

otherwise.

A "free tree" is an undirected graph that is connected

and acyclic.

A "rooted tree" is a free tree with a distinguished ver-

tex r, called the root. If v and w are vertices such that v

is on the path from r to w, v is an ancestor of w and w is a

descendant of v. If in addition v#w, v is a proper ancestor

of w and w is a proper descendant of v. If v is a proper

ancestor of w, and v and w are adjacent, v is the parent of w

10



and w is a child of v. Every vertex v except the root has a

unique parent, and zero or more children.

A "full binary tree" is a rooted tree in which each

vertex v has either two children, its left child left(v) and

its right child right(v), or no children. In subsequent

chapters, we refer to the full binary trees by simply "binary

trees.

"

The CART system consists of three main programs:

(1) CART-BUILD program,

(2) CART-CASE program, and

(3) CART-TEST program.

The purpose of each of these programs and how to use them are

the main issues of this paper.

11



II. CART: PROBLEMS AND GOALS

Depending on the application, the basic purpose of a

classification study can be either to produce an accurate

classifier or to uncover the predictive structure of the

problem. If we are aiming at the latter, then we are trying

to get an understanding of what variables or interactions of

variables drive the phenomenon - that is, to give simple

characterization of the conditions (in terms of the measure-

ment variables) that determine when an object is in one class

rather than another. These two goals are not exclusive.

Most often, they will include both accurate prediction and

understanding. An important criterion for a good classifica-

tion procedure is that it not only produce accurate classifi-

ers (within the limits of the data) but that it also provide

insight and understanding into the predictive structure of

the data.

A. PROBLEM DEFINITION

In general classification problems, the goal is the same:

Given a set of measurements on a case or object, find a sys-

tematic way of predicting what class it is in. In any prob-

lem, a classifier or a classification rule is a systematic

way of predicting what class a case is in. [Ref. 1]

12



To give a more precise formulation, arrange the set of

measurements on a case in some preassigned order, e.g., take

the measurements to be x> rXjr...! where, say, X| is the tem-

perature of a patient and X£ is the blood pressure, etc.

Define the measurements (X|,x«f...) made on a case as the

measurement vector x corresponding to the case. Take the

measurement space to be defined as containing all possible

measurement vectors.

Suppose that the cases or objects fall into J classes.

Number the classes 1,2,... J and let C be the set of classes,

that is, C= {1,...,J} . The CART provides a systematic way

of predicting class membership in C to every measurement

vector x in X . That is, given any xeX, the rule assigns x to

one of the classes {1,...,J}.

Definition: A classifier or classification rule is a

function d(x) defined on X so that for every x, d(x) is

equal to one of the numbers 2,1,..., J. Another way of

looking at a classifier is to define Aj as the subset of

X on which d(x)=J; that is, Aj ={ x;d ( x ) =J}

.

The sets A|,...,Aj are disjoint and X= Uj Aj ; thus the

JAjj form a' partition of X. This gives the following equiva-

lent definition:

A classifier is a partition of X into J disjoint subsets

A| ,...,Aj, X =Uj Aj such that for every xeAj the predicted

class is J.

13



Classifiers are not constructed whimsically. They are

based on past experience. In systematic classifier construc-

tion, past experience is summarized by a "learning sample."

This consists of the measurement data on N cases observed in

the past together with their actual classification.

(1) Definition. A learning sample consists of data

(X|,J|),... (x n ,

J

n ) . . . on N cases where x n e X and

J n £ {If . . .

/

J] , n=l,...,N. Two general types of

variables can appear in the measurement vector:

(2) Definition: A variable is called ordered or numerical

if its measured values are real numbers. A variable

is categorical if it takes values in a finite set not

having any natural ordering.

For example, a categorical variable might be a color and

could take values in the set { red, blue, ...} , while age can be

treated as numerical variable.

To summarize up to this point, we conclude that in order

to build a classifier or classification rule, we need histor-

ical data, i.e., a "learning sample." Then we use this

classifier to predict the classes of a new set of data with

unknown classes.

Tree structur-ad classifiers, or more correctly, binary

tree structured classifiers, are constructed by repeated

splits of subsets of X into descendent subsets, beginning

with X itself, the split of a subset should be selected so

that the data in each of the descendant subsets are "purer"

14



( fewSr variables) than the data in the parent subset. This

process of splitting continues until we reach subsets with

acceptable level of impurity. These subsets are called ter-

minal subsets. The terminal subsets form a partition of X .

Each terminal subset is designated by a class label. There

may be one, two, or more terminal subsets with the same class

label. The partition corresponding to the classifier is ob-

tained by uniting together all terminal subsets corresponding

to the same class.

Thus, the entire construction of a tree revolves around

three elements:

(1) The selection of the splits.

(2) The decision of when to declare a node terminal or
to continue splitting.

(3) The assignment of each terminal node to a class.

B. CART GOALS AND CHARACTERISTICS

(1) Accurate prediction.

(2) Uncover predictive relationships in the problem.
What variables or interactions of variables drive
the phenomenon.

In addition to these goals announced by designers, the

following characteristics are possessed by CART:

(1) Can be applied to any data structure by a proper for-
mulation of guestions.

(2) With standard data structure it handles both orderable
and categorical variables in a natural way.

(3) With standard data structure it is invariant under all
monotone transformations of the orderable variables
(only uses the order information)

.

15



(4) The prediction rule has a simple form that is effi-
ciently stored and executed (Binary tree representa-
tion) .

(5) Handles nonhomogenious (nonlinear) relationships be-
tween the variables (makes powerful use of conditional
information), especially in large data sets.

(6) Automatic stepwise variable selection and complexity
reduction.

(7) In classification, it gives, with no additional
effort, an estimate for misclassification risk asso-
ciated with each classified object.

(8) The output provides considerable data analytic infor-
mation, easily understood and interpreted (Binary tree
representation)

.

(9) It has proved a powerful tool in a wide variety of
applications in many fields.

16



III. SEQUENCE OF SOLUTION STEPS

A. INTRODUCTION

This chapter is concerned with the explanation of the

steps followed by the CART-BUILD program to solve the classi-

fication problem. As we said before, two types of binary

trees are built by CART, classification trees and regression

trees. Indeed the procedure for building these two types of

trees are completely different. Thus for each of these

types, the sequence of steps is introduced, followed by a

numerical example.

Recall that tree structured classifiers, or, more cor-

rectly, binary tree structured classifiers, are constructed

by repeated splits of subsets of X into two descendant sub-

sets, beginning with X itself. This process, for a hypo-

thetical six-class tree, is pictured in Figure III-l. In

Figure III-l X£ and X 3 are disjoint, with X = X 2 U X3 . Sim-

ilarly, X4 and X5 are disjoint with X4 U X5 = X2 / and X$ U

X7 = X3 . Those subsets which are not split, in this case

X6 , X 8 , X| , X||, X|
2 , X| 4 , X| 5 , X )6 , and X )7 , are called

terminal subsets. This is indicated by a rectangular box;

nonterminal subsets are indicated by circles.

The terminal subsets form a partition of X. Each termin-

al subset is designated by a class label. There may be two

or more terminal subsets with the same class label. The

17



X/^ X/5

Figure III-l. A Hypothetical Six-Class Tree
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partition corresponding to the classifier is obtained by put-

ting together all terminal subsets corresponding to the same

class, thus,

A, = X, 5 A 2 = X M U X,4

A3 = X, U X, 6 A A = X 6 U X, 7

A 5 = X 8 A 6 = X
(2

The splits are formed by conditions on the coordinates of

x = (xl,x2, ). For example, split 1 of X into X 2 and

X3 could be of the form:

Xp = x ; X4 ^ 7
,
X3 =

{
* / *<* ^ 7

]

The tree classifier predicts a class for the measurement

vector x in this way: from the definition of the first

split, it is determined whether x goes into X 2 or X3 . For

example, suppose x goes into X 2 , then from the definition of

split 2, it is determined whether x goes into X4 or X5

.

When x finally moves into a terminal subset, its predicted

class is given by the class label attached to that terminal

subset.

At this point we change terminology to that of tree

theory. From now on,

A node t = a subset of X

and

The root node t |
= X

19



Terminal subsets become terminal nodes, and nonterminal sub-

sets are nonterminal nodes.

The following terms and notations will be utilized within

this chapter:

N : Learning sample size.

Nt : Number of COSGS in class j in the learning
sample.

(tt(j)} : The set of prior probabilities estimated
either from the data as N; /N , or supplied
by the user.

N(t) : Number of cases in node t.

Nj(t) : Number of class j cases in node t.

P(j,t) = tt ( j )N; ( t) /Nj : Is the resubstitution estimate for
the probability that a case will both be in
class j and fall into node t.

P(t) = Z;P(j,t) : Is the resubstitution estimate for the
probability that any case falls into node t.

P(j/t) = P(j,t)/P(t) : Is the resubstitution estimate of
the probability that a case is in class j given
that it falls into node t.

i(t) : The impurity measure of node t.

T : The set of terminal nodes.

B. CLASSIFICATION TREES

Four elements were needed in the initial tree growing

procedure

:

(1) A set W of binary questions of the form
{Is x £ A?} , A C X .

(2) A goodness of split criterion $(s,t) that can be
evaluated for any split s of any node t.

20



(3) A stop splitting rule.

(4) A rule for assigning every terminal node to a class.

This procedure is called "the initial procedure" because

it has since been modified. The new one will be presented in

B.2.d. Sections B.2.a. through B.2.C. present the initial

procedure in detail, followed by the justification of the

modification.

1. The Standard Set of Questions

If the data have standard structure (fixed dimension-

ality), the class W of questions can be standardized. Assume

that the measurement vectors have the form x = (x| ,...,x m ),

where M is the fixed dimensionality and the variables

X| ,...,x m can be a mixture of numerical and categorical

types. The standardized set of questions W is defined as

follows

:

(1) Each split depends on the value of only a single
variable.

(2) For any numerical variable xm , W includes all ques-
tions of the form {IS xm < D?} for all D ranging over
( -oo, 00 ) .

(3) If xm is categorical, taking values, say, in
{ bj , b2 , . . . ,b|_} , then W includes all questions of the
form {IS x m £ S?}, as S ranges over all subsets of
{b| , b2 , . . . #bi_} .

There can only be a finite number of distinct splits

of the data. For example, if Xj is numerical, then the data

points in the learning sample contain at most N distinct

values x
| ^ |

, x
(

« #•••# x
| u of x | . There are at most N dif-

ferent splits generated by the set of questions {IS X| < C ?}

21



These are given by {IS x
(

< C ? } , n=l , . . . ,N'< N, where the C n

are taken halfway between consecutive distinct data values of

x, .

For a categorical variable x m , since {x m £ S} and

{x m t S} generate the same split with t|_ and t^ reversed, if

x m takes on L distinct values, then 2 L splits are defined

on the values of xm .

At each node the tree algorithm searches through the

variables one by one, beginning with X| and continuing up to

x m . For each variable it finds the best split. Then it com-

pares the M best single variable splits and selects the best

of the best.

2. The Splitting and Stop-Splitting Rules

The goodness of split criterion was originally

derived from an impurity function. [Ref. 1]

(1) Definition 1. An impurity function is a function

defined on the set of all J-tuples of numbers

P| , . . . , Pj ) satisfying Pj > 0, j= l, . . . , J, I j Pj =1

with the properties.

(a) $ is a maximum only at the point (4-,-!-,...,-!-),
J J J

(b) $ achieves its minimum only at the points
(1,0, ...,0), (0,1,0, ...,0),..., (0,0, ...,0,1),

(c) $is a symmetric function of P| , . . . , P.- .

(2) Definition 2. Given an impurity function $, define
the impurity measure i(t) of any node t as

i(t) = 4>( pfi/t) ,...., P(j/f) ) .

22



If a split s of a node t sends a proportion P^ of the

data cases in t to t^ and the proportion P^ to t
L , define the

decrease in impurity to be

Li(s,t) = \(t) - p
k i(tj _ PL i(t

L) .

Then take the goodness of split $(s,t) to be Ai(s,t). It is

easy to see that selecting the splits that maximize Ai(s,t)

at each node t is equivalent to selecting those splits that

minimize the overall tree impurity I(T).

Various splitting rules could be used. Two are used

by CART. One rule uses the GINI index of diversity as a

measure of node impurity, i.e.,

!(t) a £ .P(ilt)pfjlt) = I - lp
Z
(]lt) .

i£j J

The other is the TOWING rule: At a node t, with

s splitting t into t|_ and t^, choose the split s that maxi-

mizes

Pu P* I |
P(jltJ-P(jlt R ) I

L J

This later rule is not related to a node impurity measure.

By way of contrast, the initial stop-splitting rule

was simple (and unsatisfactory). One simply set a threshold

B>0, and declared a node t terminal (stop-splitting) if

max Aifs ,t ) P(t) Z. B
s£ S

23



3. The Class Assignment Rule

A class assignment rule assigns a class j e{l,...,J}

to every terminal node t £ T. The class assigned to node

teT is denoted by j(t).

(1) Definition: True Misclassification Rate. Given a set

of classes C, and a classifier, that is, given a

function d(x) on X taking values in C, let R*(d) be

the "true misclassification rate"; taking (x,y),xeX ,

y z C, to be a new sample (independent of the learning

sample) from the probability distribution P(A, j);

i.e. ,

P(x € A
f
y= j) = P(A J )

\

then,

R*(d) = P(d(x ) $ y )

(2) Definition: Resubstitution Estimate R(d). Define the

indicator function Q( . ) to be 1 if the statement

inside the parentheses is true, otherwise zero, then

Rid) =11 GL(d(xn ) * /„ )

is the resubstitution estimate of the "true misclassification

rate.

"

For any prior probabilities and class assignment rule

j ( t )

,

2j r (j J f ) is the resubstitution estimate of the probabil-

jtj(t)

ity of misclassification given that a case falls into node t.

24



We take as our class assignment rule the rule that minimizes

this estimate, i.e., the class assignment rule is given by:

Ifp(jlf) =maxp(i/t) , then fit) = / ,

/

If the maximum is achieved for two or more different class-

es, assign j*(t) arbitrarily as any one of the maximizing

classes.

Using this rule we get:

Definition: The resubstitution estimate r(t) of the

probability of misclassification, given that a case falls

into node t, is

r(t ) = / _ max p(j I f )

Then the resubstitution estimate for the overall misclass-

ification rate R*(T) of the tree classifier T is

R(T ) m Ij-(t) pit )

ter

Now, suppose that the threshold stopping rule is

used, with the threshold set so low that every terminal node

has only one data point. Then the P(j/t) are all zero or 1,

and the resubstitution estimate R(t) for the misclassif ica-

tion rate is zero. In general, R(t) decreases as the number

of terminal nodes increases. The more you split, the better

you think you are doing.

25



Unfortunately, when the previous procedure was ap-

plied, and the trees generated were tested using test sam-

ples, poor results were obtained. The real misclassification

rates were high in spite of the corresponding resubstitution

estimates were unrealistically low.

It was proved that the resubstitution estimate R(t)

was not an accurate estimate of the real misclassification

rate, besides, depending on the thresholding, the splitting

was either stopped too soon at some terminal nodes or con-

tinued too far in other parts of the tree.

A satisfactory resolution came only after a fundamen-

tal shift in focus. Instead of attempting to stop the split-

ting at the right set of terminal nodes, one should continue

the splitting until all terminal nodes are very small. The

result is a large tree, but then one can prune (recombine)

this large tree upward, obtaining a decreasing sequence of

subtrees. Then by using a more accurate estimate for the

misclassification rate, one can pick out that subtree having

the lowest estimated misclassification rate. This process is

a central element in the methodology and is covered in the

following section.

4. Right Sized Trees and Honest Estimates

The poor accuracy of R(t), and the problems associ-

ated with the use of a threshold level as a stopping rule led

to the conclusion that looking for the right stopping rule

was the wrong way of looking at the problem. [Ref. 1] A
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more satisfactory procedure was found consisting of two key

elements

:

(1) Prune instead of stop. Grow a tree that is much too
large and prune it upward in the "right way" until we
finally cut back to the root node.

(2) Use more accurate estimates of R*(t) to select the
right sized tree from among the pruned subtrees.

a. The Pruning Process

(1) Definition 1: A node t* lower down on the tree is

called a descendant of a higher node t if there is a

connected path down the tree leading from t to t'

Then, also, it is called an ancestor of t^ .

(2) Definition 2. A branch T t of T with root node teT

consists of the node t and all descendants of t in T.

(3) Definition 3. Pruning a branch T t from a tree T con-

sists of deleting from T all descendants of t, that

is, cutting off all of Tt except its root node. The

tree pruned this way will be denoted by T-Tt

.

The first step is to grow a very large tree,

Tmax , by letting the splitting procedure continue until all

terminal nodes are either small or pure, or contain only

identical measurement vectors. Here, pure means that the

node cases are all in one class. The best way of growing

this initial tree would be to continue splitting until each

terminal node contained exactly one sample case. The com-

promise method adopted for growing a sufficiently large

initial tree Tmax , specifies a number N m j n and continues
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splitting until each terminal node either is pure, or satis-

fies N(t)< N m j n , or contains only identical measurement

vectors

.

The second step uses the minimal cost-complexity

pruning procedure to get a sequence of subtrees T | , T£ ,

T3, .... with progressively fewer terminal nodes.

Before introducing the minimal cost complexity

pruning procedure, let us examine the idea behind it.

Definition: For any subtree T C T max , define its

complexity as |T| , the number of terminal nodes in T. Let

a>o be a real number called the complexity parameter and de-

fine the cost-complexity measure R a (T) as

r(t) = R(T) + 0/ lr| .

<x

Thus, Ra (T) is a linear combination of the cost

of the tree and its complexity. If we think of a as the com-

plexity cost per terminal node, R a (T) is formed by adding to

the misclassification cost of the tree a cost penalty for

complexity.

Now, for each value of a , find that subtree

T(a) C Tmax which minimizes Ra (T), i.e.,

RjT(oc) ) = >r? in RJT >

If a is small, the penalty for having a large

number of terminal nodes is small and T( a ) will be large.

For instance, if T max is so large that each terminal node
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contains only one case, then every case is classified cor-

rectly; R(T max ) = 0, so that Tmax minimizes R a (T) . As the

penalty a per terminal node increases, the minimizing subtree

T( a ) will have fewer terminal nodes. Finally, for a suffi-

ciently large, the minimizing subtree T(a) will consist of

the root node only, and the tree T max will have been com-

pletely pruned.

Although a runs through a continuum of values,

there are at most a finite number of subtrees of T max • Thus,

the pruning process produces a finite sequence of subtrees

Tj , T£ / T3 , . . . . with progressively fewer terminal nodes.

Now, the steps of the minimal cost complexity

procedure are as follows:

(1) Get T| from T max : Let t|_, t R be any two terminal

nodes in Tmax resulting from a split of the immediate

ancestor node t. It is easy to prove that R(t)>R(t|_)

+ R(t R ). If R(t) = R(t L ) + R(t R ), then prune off t L

and t R . Continue this process until no more pruning

is possible. The resulting tree is tj.

(2) Get T2 from T| : For each node teT| , calculate the

value of the function gi(t) defined by:

t R(t ) - R (Tt) , t k f\

9(t ) = <

T I- 1

-f 00 t e T,

29



Then define the weakest link t| in T| as the node such

that:

g (t^ = min g (f )
1 teTi

and put

Define a new tree T2 C Tj by pruning away the branch

Tr , that is,

r2 = r
(
_ r

f

(3) Using T2 instead of T| , repeat the same procedure in

the last step to find T3, a 3 , then T^, a. ^ , ... and

so on.

b. The Best Pruned Subtree

The method of pruning discussed results in a de-

creasing sequence of subtrees T| , T2 / . . • »
itj } . The problem

is now reduced to selecting one of these as the optimum-sized

tree.

If the resubstitution estimate R(T|
< ) is used as a

criterion, the largest tree T| would be selected. But if one

had an "honest" estimate RCTi^) of the misclassification cost,

then the best subtree Tl could be defined as the subtree

that minimizes R(T(
<
); i.e.,

R(T ) m* min R(Tk )

Two methods of estimation are used by CART: Use

of an independent test sample, and cross-validation. The
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independent test sample approach is computationally more

efficient and is preferred when the learning sample contains

a large number of cases. Cross-validation is computationally

more expensive, but makes more effective use of all cases and

gives useful information regarding the stability of the tree

structure.

(1) Test Sample Estimates . The idea used is very

(2)simple; select a fixed number N ' of cases at random from

the learning sample L to form a test sample L2. The remaind-

er L| form the new learning sample.

The tree Tmax is grown using only L| and

pruned upward to give the sequence Tj ,To# . .

•

$ {t| } . That is,

the {T^} sequence of trees is constructed without ever seeing

any of the cases in L2.

Now take the cases in L 2 and drop them

through T| . Each tree T|< assigns a predicted classification

to each case in L2. Since the true class of each case in

L 2 is known, the misclassificatioan cost of T^ operating on

L2 can be computed. This produces the estimate R ts (T^).

(2)
In more detail, denote by N: the number of

, . • . ,class j cases in L2. For T any one of the trees T|,T2

(2)take N-. to be the number of class j cases in L2 whose pre-

dicted classification by T is class i.

If the prior probabilities are estimated from
U> (2)

the data, use L 2 to estimate them as TT(j ) —- N: / N
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In this case:

tS ~ (2)

R(T ) L- Y-.CCt/j ) N
N t2)

t>J lJ

where C(i/j) is the cost of misclassifying a class j object

as a class i object.

The last expression has a simple interpreta-

tion. Compute the misclassification cost for every case in

L2 dropped through T and then take the average.

The last sample estimates can be used to

select the right sized tree T ^ by the rule:

R ( TKo ) = min R ( Tk )

k

(2) Cross-Validation Estimates . In V-fold cross-

validation, the original learning sample L is divided by

random selection into V subsets, L v , v=l,..., V, each con-

taining the same number of cases (as nearly as possible).

The vth learning subsample is

L
v

= L - L
v ,

y= «,..., v
,

where the minus sign is used to mean "remove", so that L

contains the fraction (V-D/V of the total data cases.

In V-fold cross validation, V auxiliary trees

are grown together with the main tree grown on L. The vth

auxiliary is grown using the learning sample L ' . Start by
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growing the overly large trees tJl
v
'

, v=l,..., V, and Tmax as

well.

Recall that a sequence of (a^) values was

calculated corresponding to the sequence of (T ^ ) subtrees.

Define:

Od . = Vo<^ OCk+i
k

e.g. ,

oil = Vo<, (x 2

(v)
With a = a

| , prune L x '
, v=l, . . . , V, to get

the sequence of optimally pruned subtrees (T^' (ot)).

Drop L v down the corresponding optimally

pruned subtree. For every value of v, i, j, define:

(v)

N.. = the number of class j cases in L v
IJ classified as i by the tree T^v) (a),

and set

NH = I
NU '

so that Nj: is the total number of class j test cases classi-

fied as i. Each case in L appears in one and only one test

sample L v , therefore, the total number of class j cases in

all test samples is N; , the number of class j cases in L.

If the prior probabilities are estimated from

the data, then

CV
R (T

k ) = _J_ I .
C (

,' / j ) NUK
N "J J
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Now the rule for selecting the right sized

tree is: Select the tree T ^ Q such that

CV CY

R (T
kQ

) = min R C T
k ) .

Then use RCV (T|<0 ) as an estimate of the misclassification

cost.

5. Numerical Example

Consider the problem of classifying the prices of the

cars in a warehouse of used cars. The owner partitioned the

cars into four classes which, to him, were important combina-

tions of the variables: car model, fuel consumption rate, and

mileage in thousands of miles. Given data from 15 cars, we

want to build a classification tree using these data as a

learning sample. TABLE III-l contains data codes, and TABLE

III-2 contains the coded data.

SOLUTION:

N = 15; learning sample size.
J = 4 ; number of classes.

Variable Information:
Min Max

Variable Name Type Value Value

MODEL categorical (3) -—
FUEL categorical (3)
MILEAGE numerical 20 90

j (classes) N;
*J

1 4 4/15 = 0.267
2 2 2/15 = 0.133
3 5 5/15 = 0.333
4 4 4/15 = 0.267
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TABLE III-l. DATA CODES

MODEL MODEL CODE FUEL (CONS. RATE) CODE

A 1 LOW 1

B 2 MEDIUM 2

C 3 HIGH 3

TABLE I I 1-2. LEARNING SAMPLE

CASE MODEL FUEL MILEAGE CLASS

1 1 1 30 1

2 2 1 40 1

3 3 3 70 4
4 1 2 70 3

5 2 2 60 4

6 3 1 80 3

7 2 2 30 3

8 1 3 80 4
9 2 1 90 4

10 3 2 60 3

11 3 3 50 3

12 1 2 50 2

13 2 3 30 2

14 3 1 20 1

15 1 1 40 1
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a. Step 1: Growing the Maximum Tree

At each split, assume that the cases answering

"YES" to a question split to the right node (t R ) while the

rest of the cases split to the left node (t|_).

For the first node t|

:

P(jl\) = 1Tj

i(t ) -
f _ Z P

2

( j I t ) ; GINI

j

= o. 729
Using

ki(s,t) = iff) _ PR i (t
R
) __PL ;(tL )

)

TABLE III-3 is produced, where Ai(s,t) is the improvement in

the tree impurity.

TABLE I I 1-3. CANDIDATE SPLITS AT NODE 1

QUES-
TION # SET OF QUESTIONS N(t L ) N(t R ) i(t L ) i(t R ) IMPROV.

1 Is Model = 1 ? 10 5 0.7 0.72 0.023
2 Is Model = 2 ? 10 5 0.7 0.72 0.023
3 Is Model = 3 ? 10 5 0.74 0.56 0.049
4 Is Fuel = 1 ? 9 6 0.642 0.5 0.144
5 Is Fuel = 2 ? 10 5 0.7 0.56 0.076
6 Is Fuel = 3 ? 11 4 0.694 0.625 0.053

k-J Is Mileage < 55?
(i.e. median
range)

7 8 0.490 0.625 0.167
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From TABLE III-3 it is clear that the Question 7 pro-

vides the most improvement relative to node 1 (marked with

*), and the first split will be according to Mileage <55.

Figure III-2. The Result of Node 1 Splitting

Now, cases of learning sample fall into node 2 are:

cases 3, 4, 5, 6, 8, 9, and 10, cases fall into node 3 are

cases 1, 2, 7, 11, 12, 13, 14, and 15.

Using the same procedure, the operation of selecting

the best splitting could be done at every nonterminal node.

Figure III-3 shows the generated maximum tree (T max ), while

TABLE III-4 contains the calculations reguired at each node.
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©

Li/f t„

Figure III-3. Maximum Tree
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b. Step 2: Pruning

(1) Get T| from Tmax :

- Calculate R(t) = p(t)r(t) , t £ Tmax

- If R(t) = R(t L ) + R(t R ) , t R ,t L Tmax

then prune off t|_ and t R .

TABLE III-5 contains the whole required calcula-

tions. It is clear that the condition for pruning is not

satisfied at any terminal nodes, so T |
= T max .

(2) Get T2 from T|

- For each node t £ T| , calculate

9ft) -{

R<t)_ R(T±) , / £
\f\- 1

T
t

+ °°
, t eT

t

- Find the weakest link t. as the node such that

0/^1 )zz mi n g (f)

tc r,

TABLE III-6 contains the calculations of g
(

(t)

table we can get:

From this

t, = f-io , QC2 = 9 ( t ) = o .c335

Figure III-4 shows the generated tree T£
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(3) Using the same procedure, we can get T* from

T2, and then T4 from T 3 , . . . and so on, until T5 which is only

the root node. TABLES III-6 through 111-10 contains the

whole calculations, and Figures III-4 through III-8 show the

corresponding trees.

c. Step 3: Selection of the Right Sized Tree

Now, we have six trees, and it is required to

choose the optimum-sized tree. Using one of the two methods,

independent test sample and cross-validation, one can select

the optimum tree. Both methods are explained in Section

B.2.d. (2)

C. REGRESSION TREES

The tree-structured approach in regression is simpler

than in classification. The same impurity criterion used to

grow the tree is also used to prune the tree. Besides this,

there are no prior probabilities to deal with.

In regression, a case consists of data (x,y) where x

falls in a measurement space X and y is a real-valued number.

The variable y is usually called the response or dependent

variable. The values in x are referred to as the independent

variables or carriers.

A tree-structured predictor is similar to a tree-struc-

tured classifier. The space X is partitioned by a sequence

of binary splits into terminal nodes. In each terminal node

t, the predicted response value y(t) is constant.
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TABLE III-6. REQUIRED CALCULATIONS TO GET T
2
FROM T|

t e Tj R(t) R(T t ) |T t |-l g,(t)

'l 0.667 7 0.0953

*2 0.2 2 0.1

l 3 0.266 4 0.0665

*4 0.133 1 0.133

l
6 0.133 3 0.0443

fcio 0.067 2 0.0335*

fc13 0.067 1 0.067

min = a 2

©

is is

t. t-

tiQ til

Figure III-4. Tree T2
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TABLE I I 1-7. REQUIRED CALCULATIONS TO GET T3 FROM T
£

t£T 2
R(t) R(T t ) !T t

|-i g 2
(t)

h 0.667 0.067 5 0.12

'2 0.2 2 0.1

4 0.266 0.067 2 0.1

fc4 0.133 1 0.133

f
6 0.133 0.067 1 0.066*

min = a 3

t

t, ^

i< t,

Figure III-5. Tree T3
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TABLE I I 1-8. REQUIRED CALCULATIONS TO GET T 4 FROM T6

t£T
3

R(t) R(T
t ) |T

t
|-l *3 (t)

l
l 0.667 0.133 4 0.1335

<2 0.2 2 0.1*

fc 3 0.266 0.133 1 0.133

fc4 0.133 1 0.133

min = a 4

ti

t t7

Figure III-6. Tree T4

45



TABLE I I 1-9. REQUIRED CALCULATIONS TO GET T5 FROM T4

t£T4 R(t) R(T t ) |T t |-l 9A U)

fc
l.

L
3

0.667

0.266

0.333

0.133

2

1

0.167

0.133*

min = 5

©

Figure III-7. Tree T5
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TABLE I 11-10. REQUIRED CALCULATION TO GET T6 FROM T 5

t£T
5

. R(t) R(T t ) . |T
t
|-l g5 (t)

c
l 0.667 0.466 1 0.201

Figure III-8. Tree T^ (One Terminal Node)
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Starting with a learning sample, three elements are nec-

essary to determine a tree predictor:

(1) A rule to select a split at every intermediate node.

(2) A rule for determining when a node is terminal.

(3) A rule for assigning a value y(t) to every terminal
node t.

Before proceeding, let us define the following notation:

t : given node

y(t) : predicted value at t

y : true value of object in t

y-y(t) : error

cost(y-y(t) ) =
(y-y(t)) 2

, LS regression

ly-y(t)| , LAD regression

LS : least square

LAD : least absolute deviations.

a. Splitting, Stop-Splitting, and Assignment Rules

(1) Splitting Rule: Choose the split to miminize:

£ cost r/_ y(t) ) + I cost ( y _ y(t) )

. N(tL) A/rv

(2) Stop-Splitting Rule: Node t is a terminal node if
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(3) Assignment Rule: Choose y(t) to minimize

£ cost (y-y(t)

)

N(t)

LS : y(t) = Average y
N(t)

LAD: y(t) = Median y
N(t)

b. Pruning

The method used to select a tree is exactly the

same as that used to select a classification tree. First, a

large tree T max is grown by successively splitting until for

every tefmax , N(t) < N min .

The minimal error-complexity pruning is done

exactly as minimal cost-complexity pruning in classification.

The result is a decreasing sequence of trees

7J ,
T? , . . .

f [ t\
j

To select the right sized tree from this sequence, test

sample estimates, and cross-validation estimates are used.
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IV. REAL DATA: MANPOWER DATA

A. GENERAL

No one can deny the importance of accurate loss forecasts

in military manpower systems. The following lines are ex-

tracted from Tucker, D. D. [Ref. 2] in order to amplify this

point.

In military manpower systems, most personnel flows are in-
itiated by the creation of vacancies within the system.
Vacancies are largely the result of losses. Losses in the
paygrade hierarchy trigger promotions from lower grades.
Vacancies also generate a need for new accessions to
replenish or expand the force. Because accessions and
promotions share this direct relationship with losses,
accession and promotion flows, as well as manpower budget-
ing, are dependent on accurate loss forecasts. An under-
estimate of losses can lead to too few accessions, too few
promotions, erroneous budget projections, and ultimately, a
readiness problem. In contrast, an overestimate can cause
too many accessions, delays in promotions, and potential
budget overruns.

A goal of this paper is to apply the new technique, CART,

to estimate and forecast the loss rates in the Marine Corps

officer manpower system.

Losses and loss rates are composed of flows of officers

from particular cellS, The cells are characterized by a

cross-classification of military occupational speciality

(MOS), length of service (LOS), and grade. When the flow

goes from one cell to another within the Marine Corps, then

it is referred to as a strength loss. Cell changes are not

losses from the Marine Corps . to the civilian labor market,
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however, from an occupational field manager's point of view,

changes to another occupatiional field are the same as a

strength loss. Similarly, for the receiving occupational

field, the changes are represented by a gain. Changes such

as promotion to a higher pay grade or a lateral cell shift

due to an officer aging from one length of service to the

next, are not recognized as losses.

Losses from within the Marine Corps to the civilian labor

market can be voluntary or involuntary. Voluntary losses oc-

cur when officers resign, retire, or are released by choice.

Involuntary losses occur due to discharge, death, disability,

release from active duty, and retirements.

B. DATA SOURCE

The data used in this project was obtained from a summary

data file from the Commander, Navy Personnel Research and

Development Centre (NPRDC) . The summary data file was gener-

ated from two source files: the Headquarters Master File

(HMF) and the Quarterly Statistical Transaction File (STATS).

The Headquarters Master File was used to produce historical

officer inventories as of the beginning of the fiscal year.

Inventories were generated for each fiscal year from 1977

through fiscal year 1983. The inventories were identified by

distinct characteristics. These characteristics were Mili-

tary Occupational Specialty (MOS), grade, and Length of Ser-

vice (LOS)

.
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The Quarterly Statistical Transaction File was used to

generate historical losses. Within this file, if the Type

Transaction Code indicated a loss, then the effective date of

action field would specify the year and month of the loss.

Losses were classified into eight categories for each fiscal

year 1977 through 1983. The losses were further classified

into distinct elements by MOS, grade, and LOS.

C. DATA FORMAT

The summary data file classified the Marine Corps officer

inventory into 40 military occupation specialties, 10 grade

levels, 31 lengths of service, and 8 loss categories. The

data format is defined by TABLE IV-1 and TABLES of Codes IV-2

and IV-3. [Ref. 3]

D. DATA PREPARATION AND EXTRACTION OF SAMPLES

Before proceeding in the data preparation, let us define

some useful terms:

(1) Attrition: Any departure from the Marine Corps by an
officer..

(2) Central Attrition Rate: The number of leavers during
the period who were in this class when they left
divided by the average number in this class during the
period.

To calculate the central attribute rate for a particular

cell, the following policy was followed:

(1) Let, t=l,...,T refer to the years 1977,1978,

(2) Let, y(t) = number of losses in year t.

(3) INV(t) = inventory in the beginning of year t.
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TABLE IV-1. DATA FORMAT

COLUMN DATA

1-2 YEAR - (FISCAL) ( 1977 ... 1983

)

3-4 MOS GROUP (0. . .39)
5-6 GRADE
7-8 LENGTH OF SERVICE (0...30)
9-13 BEGINNING OF YEAR INVENTORY

14-53 LOSS COUNTS (TYPES 1...8)

TABLE IV-2. GRADE AND TYPE LOSS CODES

CODE GRADE

WARRANT OFFICER (W-l)
1 CHIEF WARRANT OFFICER (CWD-2)
2 CHIEF WARRANT OFFICER (CWD-3)
3 CHIEF WARRANT OFFICER (CWD-4)
4 SECOND LIEUTENANT
5 CAPTAIN
7 MAJOR
8 LIEUTENANT COLONEL
9 COLONEL

CODE TYPE LOSS

1 VOLUNTARY RESIGNATION
2 VOLUNTARY RETIREMENT
3 INVOLUNTARY - DEATH
4 INVOLUNTARY - DISCHARGE
5 INVOLUNTARY - DISABILITY
6 RELEASE FROM ACTIVE DUTY
7 DISABILITY RETIREMENT
8 INVOLUNTARY RETIREMENT1

53



TABLE IV-3. MILITARY OCCUPATIONAL SPECIALTIES (MOS)

DATA ACTUAL
CODE MOS MOS TITLE

00 UN UNKNOWN
01 01 PERSONNEL AND ADMINISTRATION
02 02 INTELLIGENCE
03 03 INFANTRY
04 04 LOGISTICS
05 08 FIELD ARTILLERY
06 11 UTILITIES
07 13 ENGINEER, CONSTRUCTION, AND EQUIPMENT
08 14 DRAFTING, SURVEYING, AND MAPPING
09 15 PRINTING AND REPRODUCTION
10 18 TANK AND AMPHIBIAN TRACTOR
11 21 ORDNANCE
12 23 AMMUNITION AND EXPLOSIVE ORDNANCE DISPOSAL
13 25 OPERATIONAL COMMUNICATIONS
14 26 SIGNALS INTELLIGENCE/GROUND ELECTRONIC

WARFARE
15 28 DATA/COMMUNICATIONS MAINTENANCE
16 30 SUPPLY ADMINISTRATION AND OPERATIONS
17 31 TRANSPORTATION
18 33 FOOD SERVICE
19 34 AUDITING, FINANCE, AND ACCOUNTING
20 35 MOTOR TRANSPORT
21 40 DATA SYSTEMS
22 41 MARINE CORPS EXCHANGE
23 43 PUBLIC AFFAIRS
24 44 LEGAL SERVICES
25 46 TRAINING AND AUDIOVISUAL SUPPORT
26 55 BAND
27 57 NUCLEAR, BIOLOGICAL, AND CHEMICAL
28 58 MILITARY POLICE AND CORRECTIONS
29 59 ELECTRONICS MAINTENANCE
30 60 60XX
31 61 AIRCRAFT MAINTENANCE
32 63 AVIONICS
3 3 65 AVIATION ORDNANCE
34 68 WEATHER SERVICE
35 70 AIRFIELD SERVICES
36 72 AIR CONTROL, AIR SUPPORT, AND ANTI-AIR

WARFARE
37 73 AIR TRAFFIC CONTROL
38 75 PILOTS AND NAVAL FLIGHT OFFICERS
39 99 IDENTIFYING MOS AND REPORTING MOS

OVERLOOKED IN ORDER TO BE COMPATIBLE WITH THE PROJECT FROM
NPRDC.
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(4) Let, N(t) = maximum of y(t) and the average inventory
in year t and t+1 and computing their average:

(5) Let R = sum of y(t) divided by the sum of N(t), (both
sums over t) represents the actual central attrition
rate for the particular cell.

In the rest of this paper, we will refer to the actual

central attrition rate by simply actual attrition rate or

actual loss rate.

1 . Data Preparation

As we said before, two data files are required as

input files to execute CART programs: a learning sample data

file and a test (validation) data file. To create these

files, the following steps were followed:

(1) The summary data file (16093 records) was divided,
according to the fiscal year, into two files:

LEARN file: contains data for fiscal years from
1977 to 1981.

TEST file: contains data for fiscal years from
1981 to 1983.

(2) The last two files were used as input files to a pro-
gram to calculate the actual attrition rate for each
cell. Neglecting the cells with zero actual rate, two
output files were generated, MLEARN (1401 records) and
MTEST (885 records). The number of records neglected
in the first output file is 2996 records. The FORMAT
of these two files is as follows:

COLUMN DATA

1-2 MOS group
3-4 Grade
5-6 Length of Service
7-13 Attrition Rate
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2. Extraction of Samples

Each of the last two files, MLEARN and MTEST, was

divided into 9 data subsets, each data subset contains one of

the general MOS categorization (TABLE IV-4) . At this point,

we had 18 files (TABLE IV-5), and we were ready to execute

CART programs.

Before going on to the next chapter, someone may ask

why we divided each of the two files MLEARN and MTEST, into 9

files? The answer will be presented in Chapter VII in

detail, but for the time being, the need to do this is one of

the limitations of the CART program.

TABLE IV-4. GENERAL MOS CATEGORIZATION

GENERAL MOS
NO. CATEGORIES DATA MOS CATEGORY

1 GROUND COMBAT 03, 05, 10

2 COMBAT SUPPORT 07, 13, 20

3 AVIATION 38

4 MANAGEMENT 01, 02, 16, 19, 23, 24, 28

5 TECHNICIANS 30, 36, 37

6 INFORMATION 04, 14, 21

7 ADMINISTRATION 09, 17, 18, 22, 25, 26, 39

8 ORDNANCE GROUP 06, 11, 12, 33, 35

9 SKILLED 08, 15, 27, 29, 31, 32, 34
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TABLE IV-5. DATA FILES

GENERAL
MOS

CATEGORY FILE NAME PURPOSE RECORDS
NO. OF MOS
CATEGORIES

1 BUILDl
TESTl

LEARNING SAMPLE
VALIDATION

135
/49

3

3

2 BUILD2
TEST2

LEARNING SAMPLE
VALIDATION

191

125

3

3

3 BUILD3
TEST3

LEARNING SAMPLE
VALIDATION

78

67
1

1

4 BUILD4
TEST4

LEARNING SAMPLE
VALIDATION

403

267
7

7

5 BUILD5
TEST5

LEARNING SAMPLE
VALIDATION

136

79

3

3

6 BUILD6
TEST6

LEARNING SAMPLE
VALIDATION

116

75
3

3

7 BUILD7
TEST7

LEARNING SAMPLE
VALIDATION

88

49
7

7

8 BUILD8
TEST8

LEARNING SAMPLE
VALIDATION

85
46

5

5

9 BUILD9
TEST9

LEARNING SAMPLE
VALIDATION

71

27
7

7
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More details about the neglected and considered records in

the learning sample files are included in Appendix J.
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V. CART PROGRAMS: IMPLEMENTATION AND DESCRIPTION
OF RESULTS

A. GENERAL

CART can be executed only under the batch operating sys-

tem on the IBM 3030 at NPS (MVS). To execute it, appropriate

job control language commands (JCL) must be used together

with the data to construct the code to be submitted to MVS.

These (JCL) commands are general and used with all jobs sub-

mitted to MVS, so these commands will not be described here

but will be included in the complete programs introduced.

To set up a batch run, we have to do two things:

(1) Set up the execution commands, which includes telling
CART where certain input and output files are located.

(2) Construct two input files, the data specifications
file and the options file (if new data is being run
down a previously constructed tree, then at most an
options file is necessary)

.

Here is a summary of the files that CART uses.

1. The Data File

The data must be in a text file, and have the form of

a matrix whose rows are the cases and whose columns are the

variables. Variables may be categorical or numerical and may

have missing values. The data file must be formatted to

these specifications by the user. In particular all categor-

icals must be coded to have serial integer values.
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2. The Options and Data Specifications Files

These are input files constructed by the user in

character form. The data specifications file describes the

data and may be used in all CART runs on the same or similar

data sets. The options file contains the values of the

options and parameters chosen for the current run. Once set

up, the options file may be modified (by editing) to get dif-

ferent analyses on the same data set. There are three dif-

ferent forms of the options file: one for classification, one

for regression, and one for case-by-case output from a previ-

ously constructed tree.

3. Output Files

Each CART run produces an output file containing the

results of the run in character form. If a run constructs a

tree, then this tree can be saved in machine readable form

together with the data specifications file. Other data to be

run down this tree are assumed by CART to conform to the data

specifications stored with the tree.

CART contains three major programs called BUILD,

TEST, and CASE. These do different things:

(1) BUILD - constructs a new tree.

(2) TEST - runs data down a previously constructed tree
with summary output.

(3) CASE - runs data down a previously constructed tree
producing case-by-case output.
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The files needed by these three programs are different. Also

there are different logical unit numbers given to these files

in the FORTRAN statements opening them.

4. The Syntax of the Data Specifications and Options
Files

(1) Each data attribute or option is entered by typing a

keyword of which only the first three letters are
read. The letters may be typed in either upper or
lower case.

(2) If a value needs to be assigned to the keyword, it
has to be separated from the word by a space(s) or
equal sign.

(3) Spaces and new lines are always delimiters. The same
line can contain a number of keywords and their as-
signed values as long as they are separated by spaces.
Commas may only occasionally be used as delimiters as
noted below. All blank lines, tabs, and new lines are
ignored except where they delimit keywords and values.

(4) Specifications or options can be given in any order.
There are a few exceptions to this noted below.

(5) If a keyword for a specification or option does not
appear in the file, then CART will assign the default
value (if one exists). Thus, if a default value is
acceptable to the user, there is no need to enter its
keyword into the file.

(6) Occasionally, an * has to be typed in to signal the
end of the values assigned to a keyword.

B. PROGRAMS REQUIREMENTS

In this section all files required by each program are

described in detail, particularly the contents of input

files.
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1. The BUILD Program (CARTMVS1)

FILES NEEDED UNIT NUMBER

INPUT FILES
data 7

data specifications 1

option specifications 2

test set (option) 8

OUTPUT FILES
printable output 9

machine readable tree 4

a. Data Specifications File

The following is a sample data specifications

file for the Marine Corps officer manpower data described

in the previous chapter, followed by the comments on the

keywords, the values assigned to them, and certain other

features.

VARIABLES = 4

NAMES (1) MOS (2) GRADE (3) LOS (4) RATE*

CATEGORIES 40(1) 10(2)*

MINIMUMS 0(1) 0(2)*

MISSING 27(1)31(1)32(1)*

DATA

FORMAT

(3F3.0, F7.3)

FILE

/* (end of specifications file)
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(1) VARIABLES. This is the first exception to the general
rule that options or specifications can be entered in
any order. The specification of the number of vari-
ables must be the first thing entered in this file.

(2) NAMES. The numbers in parentheses refer to the order
in which variables appear in the data set. Variables
not named will be referred to in the output by these
numbers. The variables do not have to be named in
order and they do not have to be separated by spaces.
If the names are entered in the same order as the
variables appear in the data, then the numbers are not
needed, thus an acceptable format is:

NAMES MOS GRADE LOS RATE*.

In the data specifications file the asterisk must be
used to indicate the end of the assigned values to
NAMES, CATEGORIES, MINIMUMS, and MISSING.

(3) CATEGORIES. This indicates that the first variable
(MOS) is a 40-valued categorical, and the second
variable (GRADE) is a 10-valued categorical. By de-
fault, CART will assume that all variables not listed
under the keyword CATEGORIES are numerical. The gener-
al format for entering the categories information is:

(a) B(M) : variable M has B categories

(b) B(M-N) : variables M through N have B categories

(c) B(M,N) : variables M and N both have B
categories.

For instance:

CAT
3(5,7)2(11-15)8(19)

or
3(5,7)2(11-15)8(19)

or
3(5,7)2(11,12,13,14,15)8(19)

are all read as — variables 5 and 7 are 3-valued
categoricals , variables 11, 12, 13, 14, and 15 are
2-valued categoricals, and variable 19 is an 8-valued
categorical. Combinations are allowed so 3(17,5-9) is
a valid expression meaning that variables 5, 6, 7, 8,
9, and 17 are 3-valued categoricals. If variables
have been named, these names can be used in the speci-
fications above instead of the variable numbers, so
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that 40(MOS) is an acceptable assignment. Notice that
commas can be used inside the parentheses as spacers.
So can spaces, so that 2(11 12 13 14 15) is an accept-
able specification.

(4) MINIMUMS. This indicates that the minimum values of
the first and second variables are zeros. CART must
know the minimum value of every variable declared as a
categorical. The default value for a minimum is 1.

If the minimum of a categorical variable is not 1 then
its minimum must be entered following the keyword
"minimums." The format for entering this information
is

:

(a) K(M) : variable M has the minimum value K.

(b) K(M-N) : variable M through N have minimum
value K.

(c) K(M,N) : variables M,N have minimum value K.

Recall that K must always be an integer value. Thus,

the expression:

min
0(5, 3, 8)2(11-13), -1(7)*

will be read as -- variables 5, 3, and 8 have minimum
value 0, variables 11, 12, and 13 have minimum value
2, and variable 7 has minimum value -1. Combinations
of the form 0(9,3-6) are valid and again, names can be
used to designate variables. Note that commas are
again acceptable as spacers inside of parentheses.
This is the general rule for their use.

CART assumes categoricals have consecutive integer
values. If a categorical is coded as or 4 and it is
declared as 2-valued categorical with minimum value
then CART will die. However, if it is declared as a
5-valued categorical with minimum value zero and if
the variable is not the response variable, then CART
will accept it as having values (0,1,2,3,4). The
spurious additional categorical values will be
harmless.

(5) MISSING. This indicates that the first variable (MOS)
has the missing value codes 27,31,32. CART does not
have a default missing value code. The format for
entering missing value codes is:
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(a) X(M) : variable M has missing value code X.

(b) X(M-N) : variables M through N have the missing
value code X.

(c) X(M,N) : variables M and N have the missing
value code X.

Again, combinations such as X(l,5,7-10) are valid as
is the use of variable names. The missing value may
be in any FORTRAN format. If scientific notation is
used, it must be in a form that contains E or e and
the sign of the exponent, i.e., 9.9E+10.

(6) DATA. These three lines give the FORTRAN format for
one data case. Note that the entire format speci-
fication must be enclosed by parentheses. Also, only
F_._ formats are allowed and no integer (I) declara-
tions must appear. CART can read formatted or free
format data. Free format is the default and if a for-
mat specification is not made, then CART will attempt
to read the data file assuming that it can be read in
free format form. The word "format" must appear fol-
lowing DATA but above the line containing the FORTRAN
formatting.

(7) FILE. This is the second exception. The keyword file
must be the last keyword in the data specifications
file. In MVS the line following FILE only contains
a * in the second column. The data file must be de-
fined by a DD statement in the execution commands.

b. The Options File

There are two different forms of the options file

for that program. An example will be given on each and com-

ment made on them.

(1) Regression

The example below is the options file for a

BUILD run to construct a regression tree using the Marine

Corps officer data. Unlike data specifications, every option

has a default value.
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RESPONSE = RATE

REGRESSION

primary options

SPLIT = LAD

CROSS = 5

SERULE = 1

LINEAR SIZE = 50 PARAM = .2*

COPIOUS

COMPLEXITY =50.0

NTREES =20

secondary options ——

LIMITS

ATOM = 5

SAMPLE = 100

SURROGATES 10 5

COMPETITORS = 5

LEARNSIZE = 1500

TESTSIZE =

NODEMAX = 500

CATMAX =100

LINMAX = 50

STACK =50
*

/* (end of options file)

Comments on Keywords Used.

(1) REGRESSION. This indicates that we want to grow a
regression tree. In this case the response variable
must be numerical (not categorical).
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(2) SPLIT. CART can do either least-squares regression or
least-absolute deviation regression. The value "LS"
for SPLIT selects the former, the value "LAD" selects
the latter. The default is "LS."

(3) CROSS. CART has three methods for estimating the
regression error.

(a) The first is cross-validation. If a keyword cor-
responding to an estimation method does not ap-
pear in the file, then CART, as the default, will
use 10-fold cross-validation. If we want to use
V-fold cross-validation with V not equal to 10,
then we type in the keyword CROSS followed by a
V. In our example we have selected 5-fold cross-
validation.

(b) The second method is using test set estimation by
typing in the keyword TEST. If we do not type in
anything else, then CART will select .33 of the
data cases at random to serve as a test sample.
If we want a different proportion selected, say
0.25, then we follow the word TEST by "proportion
= 0.25."

If we already have a test set contained in a sep-
arate data file that we want CART to use, then
the keyword TEST followed by the word "file" must
be used.

(c) The third method of estimation is resubstitution.
To specify this method use the keyword
EXPLORATORY.

(4) SERULE. This selects the number of standard errors to
be used in the tree selection rule. The value assign-
ed may be any non-negative real number. The default
is 1.0 so that actually, this keyword did not need to
appear in the above file.

(5) DELETE. This keyword does not appear in our example,
but when it is used associated with some variable
names, it indicates that we want to delete these vari-
ables from the regression. If this keyword is omit-
ted, then CART will include all variables in the data
specifications in the regression. The general format
for assigning values is:

DELETE-(M,N, . . .
)*
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where M,N, ..., are the names or numbers of the vari-
ables to be deleted. Notations such as:

DELETE-(K,L,M-N)*

are acceptable and will result in the deletion of
variables K, L, and M through N, where again K, L, M,

and N can be names or numbers.

(6) LINEAR. The appearance of this keyword tells CART to
do linear combination splits on the nodes. If this
word does not appear CART will find splits on only one
variable at a time. If this keyword appears, then
values should be assigned to the keywords SIZE and
PARAM. In the above example, SIZE has been set to
equal 50. This means that CART will use linear combi-
nation splits on all notes containing 50 or more
cases, but only single variable splits if the node
contains less than 50 cases. The default value is
32000. This default value is a signal for no linear
combination splits. The value of PARAM governs the
backwards deletion of variables from the linear split.
The default value is .2. If this option is selected,
then the value assigned to the keyword LINMAX, which
appears after the keyword LIMITS, must be changed from
its default value.

(7) COPIOUS. If cross-validation is selected as the esti-
mation method, either by default or by typing CROSS,
then there is another option available which can be
called by the keyword COPIOUS. This option outputs
all node information for all of the largest cross-
validation trees. If COPIOUS is typed into the file,
but cross-validation is not selected as the estimation
method, then CART will ignore the word. This option
may generate truly copious output and should be used
judiciously.

(8) COMPLEXITY. This is the value of the initial complex-
ity parameter: its default value is zero.

(9) NTREES. This is the maximum number of trees printed
out in the tree sequence: its default is 100.

(10) LIMITS. This keyword must appear before the list of
secondary option keywords. Recall that there is no
need for them to be on separate lines. We could have
typed "LIMITS AT0M=5 SAMPLE=100 ...etc."

(11) ATOM. The minimum size below which a node will not be
split. The default is 5.
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(12) SAMPLE: The node size above which subsampling will be
used. The default is 20000.

(13) SURROGATES. This refers to two things. The first is
the maximum number of surrogate splits used to fill in
missing values. The second is how many surrogate
splits will be printed out for each node. The default
values are 10 and 5 respectively. The order in which
these two numbers are entered does not matter. The
larger of the two will automatically be set equal to
the number of surrogate splits used for missing values
and the smaller for the number of splits printed out.

(14) COMPETITORS. This is the number of competing splits
printed out for each node split: the default is 5.

(15) LEARNSIZE. The maximum number of cases allowed in the
learning sample: the default is 20000.

(16) TESTSIZE. The maximum number of cases to be put into
the test sample. The default is 20000 if TEST is
selected as a primary option. Otherwise the default
is zero.

(17) NODEMAX. If the value of K is assigned to this word,
then CART sets aside storage space for K nodes in the
largest tree it grows. The default is 750.

(18) CATMAX. If this value is set at K, then CART sets
storage space for K categorical primary and surrogate
splits in the largest tree grown. The default is
1000.

(19) LINMAX. If this value is K then CART allots storage
space for K linear combination splits in the largest
tree grown. The default is 0. If we have selected
LINEAR as a primary option, LINMAX must be set to a
positive value.

(20) STACK. If this is set to K then CART allots storage
space for trees of approximately depth K. The default
is 750.

(21) * (Asterisk). The * after the STACK value indicates
the end of LIMITS. Also the values assigned to DELETE
and LINEAR must be terminated by *.
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How to estimate the values that should be

assigned to these options? The answer will be clear in

Chapter VI.

(2) Classification

The options file for classification is very

similar to that for regression. The major difference is that

more primary option information must be given for classifica-

tion. The secondary options and keywords are exactly the

same as for regression except that one more secondary option

is added. The sample options file below is for the same data

as used before but with the assumption that variable RATE

(response variable) is a 10-valued categorical.

RESPONSE = RATE

CLASSES =10

SPLIT = GINI

PRIORS = EQUAL*

COST = UNIT*

SERULE = 1.0

LIMITS

STACK =50

WEIGHT =0.0
*

/
*
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The similarity with the REGRESSION options is

apparent, with the same keywords having the same default

values, comments will be given only on those keywords that

differ.

(1) RESPONSE. This again designates the response vari-
able, in classification, the variable that indicates
class membership.

(2) CLASSES. This keyword has two functions. First, its
appearance tells CART to grow a classification tree.
Secondly, it sets the number of classes in the data,
10 in our example.

(3) SPLIT. The allowable values of SPLIT are:

(a) gini (default): the gini rule with priors
altered to incorporate costs.

(b) symgini: the gini rule with symmetrization to
incorporate costs.

(c) twoing: the twoing rule with priors altered to
incorporate costs

(d) ordered: ordered twoing.

(e) class: class probability.

The response to this keyword sets the type of split-
ting rule to be used in constructing the tree. For
unit misclassification costs, gini and symgini are the
same.

(4) PRIORS. This sets the prior class probabilities. The
first thing typed in after PRIORS must be one of the
three words:

(a) data (default): sets the class J prior equal to
the proportion of class J cases in the data set.

(b) equal: sets all priors equal to one divided by
the number of classes.

(c) thus: user specified priors.

If either "data" or "equal" is typed, no more informa-
tion has to be entered. Typing "thus" tells CART that
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the user wants to specify the priors and must be fol-
lowed by the entry of the values of the priors. The
general format for entering the values of the priors
is:

(a) P(J) : class J has prior value proportional
to P.

(b) P(I,J)

(c) P(I-J)

classes I and J have prior values pro-
portional to P.

classes I through J have prior values
proportional to P.

(5)

Normally, the sum of the class priors has to be 1.0.
However, the reason for using the word "proportional"
above, is that CART will automatically normalize the
values of the priors entered so that they sum to 1.0.
It does this by dividing the value entered for each
class by the sum of these values. The values of P
must be non-negative numbers in any FORTRAN format.
Scientific notation may be used, i.e., .15E-1. Just
as in data specifications combinations of the above
formats are allowable.

COST. The values assigned to COST are the misclassi-
fication costs. That is, the costs C(l/J) of classi-
fying a class J case as a class I case. COST must be
followed by one of the two words:

(a) unit (default)

thus

.

If "unit" is typed no more information needs to be
entered. The costs C(l/J) are set equal to one if I

is not equal to J, and to zero for I equal to J. If
"thus" is typed it signifies that the user wants to
specify the misclassification costs and must be fol-
lowed by the entry of these values. the format for
entry is:

X(I/J)
X(I,K/J)
X(I/K,J)
X(I-K/J)
X(I/J-K)

C(I/J)
C(I/J)
C(I/K)
C(L/J)
C(I/L)

= X
C(K/J) = X
C(I/J) = X
X for all L
X for all L

from
from

through
through

K
K
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If any C(l/J) is not specified following "thus", then
CART sets it equal to one, if I is not equal to J.
CART sets all values of C(j/J) equal to zero even if
the user enters a nonzero value.

The costs can be any non-negative numbers in any FOR-
TRAN format or in scientific notation. Combinations
of formats are acceptable.

(6) * (asterisk). Entries for both PRIORS and COST have
to be ended by *.

(7) WEIGHT. This sets the center cutting exponent. The
default is zero.

2. The CASE Program (CARTMVS3)

FILES NEEDED UNIT NUMBER

INPUT FILES
new data 7

option specifications 2

machine readable tree 4

OUTPUT FILES
printable output 9

This program gives case-by-case output only. It is

useful in those situations where we want to get predicted

responses for data having unknown response, that is, to get a

predicted classification or a predicted numerical response.

It can also be used to give a case-by-case comparison of pre-

dicted with actual response for data with known responses.

It also gives a way to get case-by-case output for

the original data set used to construct the tree. That is,

construct and save the tree (using BUILD program), then using

CASE program, run the original data down the saved tree.
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a. The Option Specifications File

The case-by-case option file formats the output.

The values given to the various options tell CART the order

for printing the cases, which variables to print, and in what

format. Here is a sample options file for the Marine Corps

officers data used in the data specifications and regression

option examples:

ORDER = node

CASEID = sequence

VARIABLE (MOS, GRADE, LOS, RATE)*

DECIMALS 3 (RATE)*

Here are the keywords and their permissable

values

:

(1) ORDER. This sets the order in which the cases are
printed. It must be followed by one of the following
words

:

(a) input (default) : order by appearance in the data
file.

(b) response: order by magnitude of the predicted
response.

(c) node: order by terminal node number.

(2) CASEID. This allows the user to attach an identifica-
tion number to each case printed out. Following
CASEID one can type either:

(a) sequence (default): number sequentially starting
from 1

.

(b) none: no id numbers will be printed.

(3) VARIABLES. This selects the variables to be printed
for each case. Up to nine variables can be printed on
a standard printer. This is in addition to the pre-
dicted response, terminal node number, and the id
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number. The format to use in specifying variables is
of the form

VARIABLES (M,N, . . .
)*

where M,N, ... are variable names or numbers. The
notation ( . . . , M-N, . . . ) will print out all variables
from name or number M through name or number N. The
order of listing for a case is:

predicted response,
terminal node number, and
id number

followed by either:

M,N, ... order in which the variables were listed
or

(default) response variable plus the first eight
variables that were not deleted in the tree con-
struction in the order of their appearance in
the data file.

Note that if the response variable is missing in the
data being run down the tree, then if the default is
chosen the missing value code will be printed out for
the response variable (but not for the predicted
response)

.

(4) DECIMALS. To make the output more readable, the user
can specify the number of decimal places (number of
places to the right of the decimal point) to be print-
ed for each variable. The format is:

D(M) : variable M will be printed to D decimal
places.

D(M-N) : variables M through N will be printed to D
decimal places.

D(M,N) : variables M and N will be printed to D
decimal places.

The field for each variable printout is 7 characters
wide. In choosing the number of decimal places, one
should leave enough space for the decimal point and
the integer part of the largest value of the variable.
Notice that the variables MOS, GRADE were left out of
the specification. This is because categorical vari-
ables are automatically printed out in their integer
coding. The predicted response will be printed out
with the same decimal format as specified for the
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response variable. This latter specification can be
made even if the user is not requiring that the re-
sponse variable be printed out. The default for
DECIMALS is set by a little algorithm in CART which
tries on its own to give tidy output.

(5) * (asterisk). Note that the entries following both
VARIABLES and DECIMALS have to be terminated by a *

.

3. The TEST Program (CARTMVS2)

FILES NEEDED UNIT NUMBER

INPUT FILES
new data 8

machine readable tree 4

OUTPUT FILES
printed output 9

There are no special files needed by this program.

C. MEMORY MANAGEMENT

CART has a maximum workspace that was set by the program-

mer who installed CART on the system (about 8000K bytes).

The workspace is for the data and a number of arrays that are

filled with tree information.

Some of these array sizes are set by the user values

assigned to parameter options in options files. These will

be outlined below and with some experimentation, can be

specified to increase the data space available to CART.

CART occupies about 300-400K bytes, exclusive of the

workspace. If the data set is large and contains many vari-

ables, then it occupies most of the workspace.
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The following are the secondary options effecting the

memory managements with our comments.

(1) SAMPLE. Whenever a node is to be split, some scratch
space must be set aside for the computations. This
space is proportional to the sample size used in
splitting the node. In the default mode, this sample
size is set equal to the number of cases in the data
set. If the subsampling parameter is set lower than
the total number of data cases, the scratch space re-
quired will be reduced.

(2) NODEMAX. Sets the maximum number of nodes allowed in
the largest tree grown. Since a considerable amount
of storage must be set aside to describe the charac-
teristics of each node, setting this parameter un-
realistically high will significantly reduce the
workspace available for data.

(3) SURROGATES. This sets the number of surrogate splits
used and stored at each node. The initial default
sets a maximum of 10. Setting it lower will free
storage space.

(4) CATMAX. More memory is needed to store specifics of
splits on a categorical variable than splits on a
numerical variable. This option sets up the addi-
tional memory space necessary.

(5) LINMAX. Storing linear combination splits also re-
quires more memory that splits on individual numer-
ical variables. This option sets up the additional
storage memory for such splits. If the linear com-
bination option is not used, it defaults to zero.

(6) STACK. Some computations in CART need space in pro-
portion to the number of nodes between the root (top)
and a terminal node. This option sets the maximum for
this number.

Some of the above parameters are difficult to estimate in

advance. To assist the user the printout of every run con-

tains, at the bottom, the settings of these options together
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with the actual values used in the CART run. Given this in-

formation on a number of runs, the user should acquire some

instinct as to appropriate settings.

In classification problems with many classes, the tree

information will take up a large amount of memory if cross-

validation is used. This is because the misclassification

matrices have to be stored for every tree in all cross-vali-

dation tree sequences.

There are two possible remedies. First, use a test set

only. Second, do a preliminary set run to determine the

appropriate range of the complexity parameter. Then for the

option "COMPLEXITY" in the options file, set the complexity

parameter to the lower limit of the range. This will keep

the cross-validation trees smaller and less storage will be

required.

D. UNDERSTANDING OF RESULTS

The printed outputs of CASE program and TEST program are

self explanatory and don't need any additional comments. The

following are comments on the contents of the printed output

of the BUILD program (CARTMVS1).

The printed output consists of the following segments:

- a header,
- tree sequence,
- tree diagram,
- node information,

summary information, and
- option settings.
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1 . Tree Sequence Output

This gives the sequence of pruned subtrees and esti-

mates of their errors. The tree selected by the tree selec-

tion rule is indicated by an * following the tree number.

In regression, below the tree sequence is printed out

the initial sample variance of the data and the initial aver-

age of the response variable (least squares) or the initial

mean absolute deviation from the data median, and the initial

median of the response variable (least absolute deviation

regression)

.

The relative error estimates in least squares regres-

sion are the ratios of the estimated mean squared errors

after regression to the initial sample variance. Therefore,

the estimated mean squared error after regression can be

computed by multiplying the relative error by the initial

sample variance.

In least absolute deviation regression, the relative

error is the ratio of the estimated mean absolute error

after regression to the initial mean absolute deviation.

Thus, multiplying the relative error by the initial mean

absolute deviation gives the estimated mean absolute error.

Note that the tree selected may not be consistent with the

printed standard errors. The latter are computed using an

estimate of the standard error of the relative error ratio.

Tree selection is based on the standard error of the estimate

of the numerator only.
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The estimated misclassification costs are made rela-

tive by dividing them by the initial misclassification cost.

The initial misclassification cost is printed out underneath

the tree sequence so that the actual estimated misclassifica-

tion costs can be computed by multiplication just as the re-

gression case.

The initial misclassification cost is computed by

predicting all cases to be in the class selected by the class

node assignment rule. For instance, in the unit cost case,

the class assigned is the class with the largest initial pro-

bability. The initial misclassification cost is the sum of

the initial probabilities of the other classes. The initial

class assignment is also printed out at the end of the tree

sequence.

Unlike regression, the printed standard errors of the

relativized costs are not estimates of the standard errors of

ratios. They are simply the estimated standard errors of the

estimated misclassification costs divided by the initial mis-

classification cost. Therefore, the standard error of numer-

ators can be recovered by multiplication.

2. The Tree Diagram

This gives, in graphical form, a picture of the over-

all tree topology. It is useful in keeping track of which

nodes are ancestors or descendents of one another.
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3. Node Information

The node information is mainly self explanatory. The

improvement in classification is the decrease in mean resi-

dual sum-of-squares or in mean absolute deviation. "C.T."

stands for the complexity threshold of the node relative to

the selected tree. Thus the node having the lowest "C.T."

value would be the node having its descendents pruned in the

next smallest tree.

Beneath the node summary is a list of those surrogate

splits having the largest measures of association. The num-

ber of such splits printed is controlled in the secondary

options menu. No matter how many surrogate splits are re-

quested, only those splits with positive measures of asso-

ciation (to 2 decimals) will be printed. An "R" or "S" in

front of the split value indicates that the association is

with the reversed split (R) or with the split as printed (S).

The competing splits listed below the surrogate

splits are those splits on other variables, having the

largest improvements (regardless of the association). This

information can be important in uncovering alternative tree

structures

.

4. Summary Information

The summary information consists first of the termin-

al node summaries, then an overall summary, followed by vari-

able importance ranking. If a test set is used, the terminal

node summary contains both test and learning set results
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listed separately. In the summary, the misclassification

matrix for classes is given separately for the resubstitution

estimates and for the cross-validation or test set estimates.
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VI. CART-MANPOWFR DATA; APPLICAT ION AMD RESULTS

A. INTRODUCTION

This chapter is concerned with two main issues. The

first is the options selection in options files required by

CART, and the second is the results obtained through the ap-

plication of CART on the Marine Corps manpower data. Recall

that CART contains three programs: BUILD, CASE, and TEST.

Options files are needed only by the first two programs.

Options selection is not a simple operation. Often,

it is a trial and error operation. It requires a deep

understanding of the classification and regression trees

technique, in addition to the features of the computer

installation.

B. PREPARATION FOR EXECUTION

Before execution of CART programs, the data files, and

options files must be prepared in the specific form required.

Execution of the BUILD program requires three files as

input: data file, data specifications file, and option speci-

fications file. Each of "these files could be in a separate

file whose name must be specified in a data definition state-

ment (JCL) in any job needs this file, or all files required

could be included in one file associated with the suitable

data definition statements. The last case was chosen.
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1

.

Final Step of Data Preparation

Recall from Chapter IV that nine files were prepared

to be as input files for the CART-BUILD program. Each of

these files contains one of the general MOS categorization

groups, e.g., BUILD1 file contains the MOS codes 03, 05, and

10 which are the subgroups of the ground combat group. This

means that MOS is a categorical variable that takes values

from the set 03,05,10 . However these values, as required

by CART programs, must be integers and the difference between

any two adjacent values must equal 1. For this reason, all

MOS codes within each file are temporarily changed to be

serial integers, e.g., BUILD1 file contains now the MOS codes

51, 52, and 53.

2. Options Selected

The following lines are the contents of the options

file selected to associate the execution of BUILD program

using BUILD1 file as an input, followed by the justification

of this selection.

RESPONSE = RATE

REGRESSTION

SPLIT = LAD

CROSS 5

LIMITS •

ATOM = 2

SAMPLE =100

NODEMAX = 300
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CATMAX =100

STACK =50

*

By the keyword REGRESSION, we selected regression

trees rather than classification trees, because our response

variable RATE, is a numerical variable.

The type of splitting is selected to be LAD; the

least-absolute deviation regression rather than least-squares

regression. The former is specially designed to be used by

CART.

The number of cross-validation trees is selected to

be 5. The greater the number of cross-validation trees, the

greater the accuracy of misclassification estimate, the

greater the time of execution, and vice-versa.

The minimum size below which a node will be split is

chosen to be 2. The smaller the minimum size, the larger is

the maximum tree grown Tmax , and the larger is the memory re-

quired to hold the tree. Choosing greater values for the

minimum size of a node can lead to generation of a maximum

tree which is smaller than the optimal tree.

The node size above which subsampling will be used is

selected to be 100. The greater the selected value, the

greater the time of execution and the greater the memory re-

quired to do the calculations at each node. If a small value

is assigned to the keyword SAMPLE, only a small number of

cases will be considered at each node to select the best
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split, which in turn can lead to a poor selection for the

optimal tree.

The maximum number of nodes of the maximum tree is

chosen to be 300. The greater the number selected, the

greater the memory allocated to hold the proposed maximum

tree, and this can lead to a program fault because of memory

limitations. A compromise is required between this number

and the minimum node size selected.

CATMAX is assigned a value of 100. This is a trial

and error operation.

The maximum depth of the tree, in terms of the number

of nodes between the root and terminal nodes, is selected to

be 50. It is also a trial and error operation.

It may seem to someone that the options selection

is a simple operation. It is a time and effort consuming

operation, especially in the case of a large data set and

categorical variables that take values from a set of many

elements. This point will be discussed in detail in the next

chapter.

C. STEPS OF EXECUTION

1. Disk Space Allocation

Before execution of the BUILD progoram, a space must

be allocated on the MVS disk storage system to hold the gen-

erated tree. A typical program that can be used to allocate

six cylinders is as follows:
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//ALLOCAT JOB (3041,111), 'ALLOCATE JCL ' , CLASS=A

//*MAIN ORG = NPGVM1.3041P

// EXEC PGM = IEFBR14

//DD1 DD UNIT = 3330V, MSVGP = PUB4A, DISP = (NEW,CATLG),

// DISNAME = MSS.S3041.TREE

//

2. Execution of CART-BUILD Program

One file containing data, data specifications, and

options is constructed instead of three separate files. This

file is submitted to MVS by the command SUBMIT. The data

contained in this file are those contained in one of the

BUILD1, . . . ,BUILD9 files. The following is a typical example

of such job.

//HMAIN1 JOB (111 1,0001), 'MY NAME*, CLASS = G

//*MAIN ORG=NPGVM1.3041P

//EXEC PGM=CARTMVS1,REGION=5120K

//STEPLIB DD DISP=SHR,DSN=MSS.SYS3.CART.L0ADM0D

DD DISP=SHR,DSN=SYS1.PP.VF0RTLIB

//FT04F001 DD DISP= ( OLD, KEEP) , DSN=MSS. S3041 . TREE

//FT07F001 DD*

65.00.07. 0.0513
65.01.06. 0.6667

rest of data

67.07.28. 1.0000
/
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FILE: MAIN5 BUILD Al

//FT06F001
//FT09F001
//FTOlFOOl

DD SYSOUT=A
DD SYSOUT=A
DD *

VARIABLES=4
NAMES (l)MOS (2)GRADE ( 3 ) LOS (4) RATE*
CATEGORIES 3(1)10(2)*
MINIMUMS 65(1)0(2)*
MISSING 9(2)*
DATA
FORMAT
(3F2.0,F7.4 )

FILE
/*

//FT02F001 DD *

RESPONSE=RATE
REGRESSION
SPLIT=LS
CROSS FOLD = 10*
TREE
LIMITS

ATOM=l
SAMPLE=1000
LEARNSIZE=200
NODEMAX=200
STACK=50
*

/*

//

3. Kysrnt.inn of CART-CASE, Program

The goal of this run is the validation of the results

obtained from the previous run. The input for this program

is one of the 9 files, TEST1 , . . . , TEST9. Data files must be

in the same format as those files used to build the corres-

ponding trees.
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Selection of options for this run is very simple

since it specifies only the format of required output. An

example for this run is as follows:

//HCASE1 JOB(1111,0001) , 'MY NAME
' , CLASS=C

//*MAIN ORG=NPGVM1.3041P

// EXEC PGM=CARTMVS3, REGION=2048K

//STEPLIB DD DISP=SHR / DSN=MSS.SYS3.CART.L0ADM0D

// DD DISP=SHR,DSN=SYS1.PP.VF0RTLIB

//FT04F001 DD DISP= (OLD, KEEP) , DSN=MSS. S3041 . TREE

//FT07F001 DD*

65.00.14.

rest of data
67.08.25.
/*

//FT06F001 DD SYSOUT=A

//FT09F001 DD SYS0UT=A

//FT02F001 DD*

ORDER=INPUT

CASEID=SEQUENCE

VARIABLES ( RATE , MOS , GRADE , LOS )

*

DECIMALS 1 (LOS) 4 (RATE)*

/*

//

4. Execution of CART-TEST Program

The goal of this program is to print a summary of re-

sults obtained from both of the previous runs. No options
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selection, and no input files, except the binary tree, are

required. A typical example is as follows:

//HTEST1 JOB( 1111, 1111) , 'MY NAME
'

, CLASS=C

//*MAIN ORG=NPGVM1.3041P

// EXEC PGM=CARTMVS2,REGION=2048K

//STEPLIB DD DISP=SHR,DSN=MSS.SYS3.CART.L0ADM0N

// DD DISP=SHR,DSN=SYS1.PP.VF0RTL2B

//FT04F001 DD DISP= (OLD, KEEP) , DSN=MSS. S3041 . TREE

//FT08F001 DD*

66.01.13. 0.1111

rest of data

«

67.03.02. 0.0500

/*

//FT06F001 DD SYSOUT=A

//FT09F001 DD SYSOUT=A

//

D. RESULTS

The complete printed results are found in the appendix.

Here is a summary of results obtained from BUILD and CASE

runs

.
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1. Results of CART-BUILD Run

This run generates two outputs, the first is a binary

tree saved on a file in binary format, the second is a print-

ed output. This run was executed nine times. TABLE VI-1

contains a summary for these runs.

It is clear from TABLE VI-1 that LOS is the most im-

portant variable affecting the loss rate in all the nine

runs. A general conclusion could be reached concerning the

relative importance of variables in all runs is as follows:

VARIABLE NAME RELATIVE IMPORTANCE

LOS
GRADE
MOS

2. Results of CART-CASE Run

The CART-CASE run was executed nine times, each time

one of the TEST files was used as an input file. The printed

output of this run contains the predicted loss rates in addi-

tion to the actual loss rates (if it is required) for all

cases, case-by-case, contained in the input files.
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VII. CART PROGRAM: LIMITATIONS AND EVALUATION

A. INTRODUCTION

Two main points are discussed when evaluating any compu-

ter program: memory requirements and CPU time requirements.

In our case, both requirements are greatly affected by the

number and types of variables in addition to the data size.

It appears that no effort was made to optimize the memory

and CPU time requirements in the development of CART. This

view resulted from our attempt to execute the CART-BUILD pro-

gram on data with the following specifications.

NUMBER OF CASES = 1401

NUMBER OF VARIABLES = 4

TYPES OF VARIABLES: 2 numerical variables
2 categorical variables

DEPENDENT VARIABLE: Numerical variable.

The first categorical variable takes values from the set

{0,1 ,...,9}, the second takes values from the set

{0, 1, . . . ,39}

.

It is enough to say that 5000K bytes of memory and more

than 10 hours of CPU time were not enough to execute the job

on IBM 3030 computer system.
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Two main reasons are behind this lack of efficiency.

(1) This technique depends on testing all possible com-
binations and alternatives at each step of the algor-
ithm to choose the best of them, e.g., selection of
the best split at each node, selection of the weakest
link in pruning the maximum tree, selection of the
best pruned tree from the set of all pruned trees,
etc. Looking for the best conditions is a time con-
suming operation. Many techniques were developed to
replace the previous technique, these techniques look
for sufficient conditions rather than best conditions.

(2) The responsibility of memory management is given to
the user who has to do it by trial and error. Design-
ers don't appear to use dynamic allocation techniques
to enable them to optimize the memory requirements
during the execution time.

Few seconds are required to execute CART program on

data with numerical variables only, but when categorical

variables are taken into consideration, the situation is

completely different.

B. CPU TIME REQUIREMENTS

Ten files were prepared to test the CPU time requirements

of CART-BUILD program. The common specifications of these

files are:

NUMBER OF RECORDS = 40

NUMBER OF VARIABLES = 4

TYPES OF VARIABLES = 2 numerical variables
2 categorical variables.

The first categorical variable takes values from the set
{1, ...,9}

INDEPENDENT VARIABLE: numerical variable.
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The only difference among these files is the set of cate-

gories assigned to the second categorical variable. TABLE

VII-1 contains the number of categories of the second cate-

gorical variable and the results obtained.

It is clear from TABLE VII-1 that CART-BUILD program

enters an infinite loop if the number of categories for a

categorical variable is greater than 15.

The effect of the learning sample size is neglegible if

it is compared with that of the number of categories with

respect to CPU time, but with respect to memory requirements,

the both factors have the same great effect.

C. TEST OF EFFECTIVENESS

To check the effectiveness of this technique, the Figure

of Merit is used as a measure of effectiveness:
v- 2 ,

where: F = 4 ( K _ P. ) D •/ R

i : number of cells,

: predicted loss rate for cell i,

: actual loss rate for cell i,

: inventory in "actual" cells.

Figure of Merit was calculated for each one of the nine

outputs of the CART-CASE program. The results are tabulated

in TABLE VI 1-2.

TABLE VII-2 shows the lack of effectiveness of CART when

the average inventory per cell is large, specifically, when

TEST1, TEST3, and TEST7 files were used as input files.
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TABLE VII-1. CPU TIME REQUIREMENTS

FILE NUMBER OF
NAME CATEGORIES CPU TIME

Fl 40 >60 MINUTES

F2 37 >60 MINUTES

F3 34 > 60 MINUTES

F4 31 > 60 MINUTES

F5 28 >60 MINUTES

F6 25 >60 MINUTES

F7 22 >60 MINUTES

F8 19 >60 MINUTES

F9 15 05 MIN. , 06 SECONDS

F10 10 00 MIN. , 21 SECONDS
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TABLE VI 1-2. TEST OF EFFECTIVENESS

INPUT
FILE

NUMBER
OF CELLS

AVG . NO . OF
INVENTORY
PER CELL F

X
2

A 0.95

TEST1 149 26.757 217.394 178.5

TEST2 125 7.869 142.016 152.1

TEST3 66 78.179 360.885 85.96

TEST4 267 6.351 207.535 305.0

TEST5 79 5.006 73.494 100.7

TEST6 75 2.704 31.528 96.2

TEST7 49 24.884 111.247 66.3

TEST8 46 0.837 8.903 62.8

TEST9 27 1.113 7.239 40.1

, . -. — — - — i — ,
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D. EVALUATION

The program designers have assumed that the users are

professionals who fully understand everything about the

classification and regression tree technique. Failing this,

the selection of options will be time and effort consuming,

if not impossible.

The program depends upon a user-trial-and-error oper-

ation for memory management. There can be waste of computer

time, and the goal could be nonachievable.

From the users point of view, the program is effi-

cient when data variables are only numerical variables, but

this efficiency will be greatly reduced if categorical vari-

ables are considered.

From the test of effectiveness, we can conclude that

CART is effective only when the average inventory per cell is

not large.

The program can be used with categorical variables

provided that the number of categories for each doesn '

t

exceed 15.
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APPENDIX A

OUTPUTS OF THE CART PROGRAMS USING
1ST GENERAL CATEGORIZATION DATA AS INPUT

OUTPUT OF THE PROGRAM : CART-BUILD

PROGRAM PURPOSE : BUILDING A REGRESSION TREE

INPUT FILE :

TERMINAL
TREE NODES

1 68
2 67
3 66
4 65
5 64
6 63
7 62
8 61
9 60

10 59
11 58
12 57
13 56
14 55
15 54
16 53
17 52
18 50
19 49
20 48
21 45
22 44
23 43
24 42
25 41
26 40
27 39
28 38
29 36
30 35
31 34
32 32
33 31

NAME
CONTENTS

BUILD1
GENERAL MOS CAT. 1 DATA

TREE SEQUENCE

CROSS-•VALIDATION
RELATIVE ERROR

0.68 V- 0.000
0.68 V- 0.000
0.67 +/- 0.000
0.67 V- 0.000
0.67 V- 0.000
0.67 V- 0.000
0.67 +/- 0.000
0.67 V- 0.000
0.67 +/- 0.000
0.67 V- 0.000
0.67 +/- 0.000
0.67 V- 0.000
0.67 t/- 0.000
0.67 V- 0.000
0.67 V- 0.000
0.67 V- 0.000
0.67 +/- 0.000
0.66 V- 0.000
0.66 V- 0.000
0.66 */- 0.000
0.66 V- 0.000
0.66 V- 0.000
0.66 V- 0.000
0.66 V- 0.000
0.66 +/- 0.000
0.66 V- 0.000
0.67 */- 0.000
0.64 +/- 0.000
0.63 +/- 0.000
0.63 +/- 0.000
0.63 /- 0.000
0.63 V- 0.000
0.63 +/- 0.000

RESUBSTITUTION COMPLEXITY
RELATIVE ERROR PARAMETER

0.25
0.25
0.25

25
25
25
25
25

0.25
0.25
0.25
0.26

26
26
26
26
26
26
27

0.27
0.27
0.27
0.28
0.28
0.28
0.28
0.28
0.29
0.29
0.30
0.30
0.31
0.31

0.0
0. 003
Q. 004

005
0051
Oil

0. 012
014
016
020
022

c 023
023
032
035
041
041
049
052
054
059
060
061
064
067
068
076
088
.110
.114
.125
.126
. 135
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34 30 0.63 +/- 0.000 0.32 0.161
35 29 0.61 +/- 0.000 0.32 0.175
36 25 0.62 +/- 0.000 0.34 0.182
37 20 0.61 */- 0.000 0.37 0.194
38 19 0.61 V- 0.000 0.38 0.250
39 18 0.61 V- 0.000 0.39 0.281
40 15 0.64 V- 0.000 0.42 0.289
41 14 0.64 +/- 0.000 0.43 0.333
42* 12 0.63 V- 0.000 0.45 0.362
43 10 0.68 V- 0.000 0.48 0.590
44 9 0.72 */- 0.000 0.51 0.784
45 7 0.72 +/- 0.000 0.56 0.910
46 5 0.69 V- 0.000 0.62 0.987
47 4 0.71 +/- 0.000 0.66 1.28
48 3 0.77 +/- 0.000 0.71 1.79
49 2 0.82 V- 0.000 0.82 3.48
50 1

Initial

1.00

median

+/- 0.000 1.00

= 0.178

6.10

Initial mean absolute deviaition = 0.171

CLASSIFICATION/REGRESSION TREE

+--

I

+— _-.

I

+

I

I

4-_ - +

I

+ 5 +

I I

+ 6-

I

I

._8 +

I

+ 9— +

I I

._ +

I

+—10-
I

+--11--+
I I

Terminal Regions

12 3 5 6 7 8
PARTITIONING TREE

11 12

Node 1 was split on variable LOS
A case goes left if variable LOS .le. 1.95E+01
Improvement = 3 . 1E-02 (C. T. = 6.1E+00)
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* * Node Cases Median Mean Abs Dev
* * 1 195 0.18 17
• 2 109 0.84E-01 94E-01

* * 7 86 0.29 20

109 86
* * Surrogate Split Assoc. Improve

* * 1 GRADE r 0, 1, 2, 3, 7, 0.65 7.7E-03
* * 8, 9

* * * •

* * * • Competitor Split Improve
* 2 * * 7 * 1 GRADE 4, 5 6, 7, 8 1.7E-02
* * * * 2 MOS 51 5.0E-04
* * * *

k Nc>de 2 was split on variable GRADE
* * A CASE GOES LEFT IF VARIABLE GRADE IS IN ( 5, 6)

* * IMPROVEMENT = 9. 1E-03 (C. T. = 1 7E+00)
* 2 •

* * NODE MEDIAN MEAN ABS DEV.
* * 2 109 0.84E-01 94E-01

k 3 79 0.11 93E-01
* *

*
-6 30 0.19E-01 38E-01

79 30
* * Surrogate Split Assoc

.

Improve
* * 1 LOS r 1.50E+00 0.13 1.1E-03

* *__.
* * Competitor Split Improve

* * 1 LOS 7.50E+00 2.8E-03
3 * I 6 : 2 MOS 51, 52 6.8E-04

* *

* *

*

* *

* *

* 3 *

* *

* *

* *

31 48
* *

Node 3 was split on variable LOS
A CASE GOES LEFT IF VARIABLE LOS .LE. 7.50E+00
IMPROVEMENT = 6.5E-03 (C. T. = 1.2E+00)

ODE CASES
3 79
4 31

-5 48

MEDIAN
0.11
0.22
0.96E-01

SURROGATE SPLIT

MEAN ABS DEV.
0.93E-01
0.12
0.50E-01

ASSOC. IMPROVE.
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* * 1 GRADE R 0, 1, 2, 3, 4, 0.03 3.5E-03
* * 6, 7, 8, 9

* *

* * Competitor Split Improve
* 4 * 5 ] 1 GRADE 5 3.5E-03
* * 2 MOS 52 3.3E-05
* *

*

Node 4 was split on variable LOS
A CASE GOES LEFT IF VARIABLE LOS .LE. 1.00E+00

*

4 *
IMPROVEMENT = 4. OE-03 (C. T. = 7.8E-01)

NODE CASES MEDIAN MEAN ABS DEV.
* * 4 31 0.22 0.12
* -1 1 1.0 0.00E+00

* *

if

5 30 0.22 0.97E-01

30
* Competitor Split Improve
* 1 GRADE 5 1.2E-03
* 2 MOS 51 3.4E-04

* *

5 *

Node 5 was split on variable GRADE
A case goes left if variable GRADE is in ( 5)
Improvement = 1.7E-03 (C. T. = 5.9E-01)

* * Node Cases Median Mean Abs Dev
* * 5 30 0.22 0.97E-01

k -2 18 0.24 0.51E-01
* * 6 12 0.12 0.14

* *

18 12
* * Competitor Split Improve

* * 1 LOS 4.50E+00 8.8E-04
„_ _* * 2 MOS 51 4.6E-04
I * *

I * *

I 2 I • 6 *

I * *

I * *
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* 6 *

* *

* *

* *

* *

3 9

Node 6 was split on variable LOS
A case goes left if variable LOS .le. 4.50E+00
Improvement = 4.3E-03 (C. T. = 8.5E-01)

Node
6

-3
-4

Cases
12
3

9

Median
0.12
0.67
0.11

Mean Abs Dev.
0. 14
0. 16
0.36E-01

it NODE 7 WAS SPLIT ON VARIABLE GRADE
* * A CASE GOES LEFT IF VARIABLE GRADE IS IN ( 7, 8)

* * IMPROVEMENT = 1 . 7E- 02 (C. T. = 3.4E+00)
* 7 *

* * NODE CASES MEDIAN MEAN ABS DEV.
* * 7 86 0.29 0.20

* 8 61 0.24 0.12
*

if

*

*
10 25 0.67 .0.23

61 25
* * Competitor Split Improve

* * 1 MOS 51 4. 1E-03
* * 2 LOS 2.55E+01 3.8E-03

• * * *

* * * *

8 * * 10 *

* * * *

* * * *

* *

NODE 8 WAS SPLIT ON VARIABLE LOS
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* * A CASE GOES LEFT IF VARIABLE LOS . LE. 2.65E+01
* * IMPROVEMENT = 3 . 5E-03 (C. T. = 9.8E-01)

* 8 *

* * NODE CASES MEDIAN MEAN ABS DEV.
* * 8 61 0.24 0.12

1k -7 41 0.21 0.88E-01
* * 9 20 0.38 0.16

• *

41 20
* * Competitor Split Improve

* * 1 MOS 52 1.5E-03
___* *

* *
2 GRADE 7 1.3E-04

I 7 I * 9 *

* *

* *

*

NODE 9 WAS SPLIT ON VARIABLE MOS
A CASE GOES LEFT IF VARIABLE MOS IS
IMPROVEMENT = 6.5E-03 (C. T.

IN ( 52)
= 1.2E+00)

* * NODE CASES MEDIAN
• * 9 20 0.38
* -8 7 0.67

* * -9 13 0.29
* *

7 13
* COMPETITOR SPLIT
* 1 LOS 2 95E+01

MEAN ABS DEV.
0. 16
0.12
0.91E-01

IMPROVE.
1.4E-03

*

* *

* *

* 10 *

* *

* *

*

* *

Node 10 was split on variable MOS
A case goes left if variable MOS is in ( 51)
Improvement = 2.7E-03 (C. T. = 9.1E-01)

Node Cases
10' 25
11 9

-12 16

Median
0.67
0.47
0.67

Mean Abs Dev.
0.23
0.24
0.19
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* *

9 16
* *

* *

* *

* *

* 11 *

* *

* *

*

Competitor
1 LOS
2 GRADE

Split
2.65E+01
6

Improve.
2.2E-03
8.5E-04

NODE 11 WAS SPLIT ON VARIABLE GRADE
A CASE GOES LEFT IF VARIABLE GRADE IS IN ( 2, 3)

* * IMPROVEMENT = 6.6E-03 (C. T. == 1 3E+00)
11 * r

* * Node Cases Median Mean Abs Dev
* * 11 9 0.47 0.24
* -10 3 1.0 0.11

* *

* *
-11 6 0.29 0.91E-01

3 6
* Competitor Split Improve
* 1 LOS 2.35E+01 1. 1E-03

10 11

12 TERMINAL NODES

de Cases Median Mean Ad

1 1 1.00 0.00E+00
2 18 0.239 0.51E-01
3 3 0.667 0.16
4 9 0.105 0.36E-01
5 48 0.962E- 01 0.50E-01
6 30 0.186E- 01 0.38E-01
7 41 0.209 0.88E-01
8 7 0.667 0.12
9 13 0.289 0.91E-01

10 3 1.00 0.11
11 6 0.286 0.91E-01
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12 16 0.667 0.19

Relative Number Of Minimum
Importance Categories Category

LOS 100. numerical
GRADE 70. 10
MOS 17. 3 51

Number of cases in the learning sample

PRIMARY OPTION SETTINGS

195

construction rule
estimation method
tree selection
variables used

linear combinations

least absolute deviation
10-fold cross-validation
1.0 se rule
See variable importance list above.
response is variable RATE
no

SECONDARY OPTION SETTINGS

1 Minimum node size = 1

2 Minimum size below which node will not be split = 5

3 Number of surrogate splits printed = 2

4 Number of competing splits printed = 2

5 Maximum number of trees for which errors are printed = 100
6 INITIAL VALUE OF THE COMPLEXITY PARAMETER = 0.000
7 Maximum number of cases to put into learning sample = 20000
8 Maximum number of cases to put into test sample = 20000
9 Maximum node size without sub-sampling the node = 196

10 Maximum number of surrogates used = 2

11 Maximum number of nodes allowed for in large tree = 750
(Actual maximum number of nodes = 70)

12 Max. categorical primary + surrogate splits in a tree = 1000
13 Max. linear combination splits in a tree =

(Actual number cat. + linear combination splits = 35)
(Actual number categorical competitor splits = 51)

14 Maximum height of tree = 750
(Actual maximum height of tree = 11)

Maximum size of memory available = 70000
(Actual size of memory used in run = 45070)
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OUTPUT OF THE PROGRAM : CART-CASE

| PROGRAM PURPOSE : VALIDATION OF RESULTS

INPUT FILE
NAME : TEST1
CONTENTS : GENERAL MOS CAT. 1 DATA

|

CASE NODE PREDICTED RATE
1. 10 1.0000 1.0000
2. 6 0.0186 0.0071
3. 6 0.0186 0.0140
4. 6 0.0186 0.0103
5. 6 0.0186 0.0088
6. 6 0.0186 0.1132
7. 6 0.0186 0.0588
8. 2 0.2390 0.0059
9. 2 0.2390 0.0805

10. 2 0.2390 0.1573
11. 2 0.2390 0.1241
12. 2 0.2390 0.2237
13. 2 0.2390 0.1615
14. 5 0.0962 0.2278
15. 5 0.0962 0.2090
16. 5 0.0962 0.0580
17. 5 0.0962 0.1587
18. 5 0.0962 0.6667
19. 3 0.6667 0.8000
20. 4 0.1053 0.1020
21. 4 0.1053 0.0640
22. 4 0.1053 0.0641
23. 5 0.0962 0.0393
24. 5 0.0962 0.0358
25. 5 0.0962 0.0813
26. 5 0.0962 0.1061
27. 5 0.0962 0.1624
28. 5 0.0962 0.0989
29. 5 0.0962 0.0882
30. 5 0.0962 0.1709
31. 5 0.0962 0.1613
32. 5 0.0962 0.2727
33. 5 0.0962 0.1667
34. 11 0.2857 1.0000
35. 11 0.2857 1.0000
36. 6 0.0186 0.0351
37. 6 0.0186 0.0115
38. 6 0.0186 0.0153

MOS
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51,

GRADE
3.

4.

4.

4.

4.

4.

4.

5.

5.

5.

5.

5.

5.

5.

5.

5.
5.

5.
6.

6.

6.

6.

6.

6.

6.

6.

6.

6.

6.

6.

6.

6.

6.

6.

6.

7.

7.

7.

LOS
20.0

3.0
4.0
5.

6.

7.

8.

9.

10.

11.0
18.0
4.0
5.

6.

7.

8.

9.

10.
11.
12.
13.
14.
15.
16.
17,
19,

20,
22,
10,

11.

12
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39. 6 0.0186 0.0114 51. 7. 13.0
40. 6 0.0186 0.0050 51. 7. 14.0
41. 6 0.0186 0.0093 51. 7. 16.0
42. 6 0.0186 0.0171 51. 7. 18.0
43. 6 0.0186 0.0204 51. 7. 19.0
44. 7 0.2090 0.3784 51. 7. 20.0
45. 7 0.2090 0.3600 51. 7. 21.0
46. 7 0.2090 0.2927 51. 7. 22.0
47. 7 0.2090 0.0769 51. 7. 23.0
48. 7 0.2090 0.2105 51. 7. 24.0
49. 7 0.2090 0.3077 51. 7. 25.0
50. 7 0.2090 0.3077 51. 7. 26.0
51. 9 0.2889 0.3333 51. 7. 27.0
52. 9 0.2889 0.2500 51. 7. 28.0
53. 9 0.2889 0.3636 51. 7. 30.0
54. 7 0.2090 0.0956 51. 8. 20.0
55. 7 0.2090 0.0884 51. 8. 21.0
56. 7 0.2090 0.1566 51. 8. 22.0
57. 7 0.2090 0.1475 51. 8. 23.0
58. 7 0.2090 0.1942 51. 8. 24.0
59. 7 0.2090 0.2727 51. 8. 25.0
60. 7 0.2090 0.1333 51. 8. 26.0
61. 9 0.2889 0.1702 51. 8. 27.0
62. 9 0.2889 0.3200 51. 8. 28.0
63. 9 0.2889 0.2500 51. 8. 29.0
64. 9 0.2889 0.5806 51. 8. 30.0
65. 6 0.0186 0.0556 52. 4. 0.0
66. 6 0.0186 0.0195 52. 4. 1.0
67. 6 0.0186 0.0119 52. 4. 2.0
68. 6 0.0186 0.1250 52. 4. 9.0
69. 2 0.2390 0.1597 52. 5. 3.0
70. 2 0.2390 0.1508 52. 5. 4.0
71. 2 0.2390 0:i780 52. 5. 5.0
72. 2 0.2390 0.1656 52. 5. 6.0
73. 2 0.2390 0.2759 52. 5. 7.0
74. 5 0.0962 0.0488 52. 5. 8.0
75. 5 0.0962 0.2424 52. 5. 9.0
76. 5 0.0962 0.0667 52. 5. 10.0
77. 5 0.0962 0.0769 52. 5. 11.0
78. 5 0.0962 0.1111 52. 5. 12.0
79. 3 0.6667 0.3333 52. 6. 4.0
80. 4 0.1053 0.1053 52. 6. 5.0
81. 4 0.1053 0.0485 52. 6. 6.0
82. 4 0.1053 0.0494 52. 6. 7.0
83. 5 0.0962 0.0111 52. 6. 8.0
84. 5 0.0962 0.0112 52. 6. 9.0
85. 5 0.0962 0.0526 52. 6. 10.0
86. 5 0.0962 0.1728 52. 6. 11.0
87. 5 0.0962 0.0606 52. 6. 12.0
88. 5 0.0962 0.0615 52. 6. 13.0
89. 5 0.0962 0.0500 52. 6. 15.0
90. 5 0.0962 0.5000 52. 6. 18.0
91. 5 0.C962 0.5000 52. 6. 19.0
92. 12 0.6667 1.0000 52. 6. 20.0
93. 6 0.0186 0.0189 52. 7. 13.0
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94. 6 0.0186 0.0139 52. 7. 14.0
95. 6 0.0186 0.0144 52. 7. 15.0
96. 6 0.0186 0.0313 52. 7. 16.0
97. 7 0.2090 0.4762 52. 7. 20.0
98. 7 0.2090 0.2353 52. 7. 21.0
99. 7 0.2090 0.3333 52. 7. 22.0

100. 7 0.2090 0.3333 52. 7. 23.0
101. 7 0.2090 1.0000 52. 7. 24.0
102. 8 0.6667 0.6667 52. 7. 29.0
103. 6 0.0186 0.0238 52. 8. 19.0
104. 7 0.2090 0.2069 52. 8. 20.0
105. 7 0.2090 0.0750 52. 8. 21.0
106. 7 0.2090 0.0784 52. 8. 22.0
107. 7 0.2090 0.0476 52. 8. 23.0
108. 7 0.2090 0.2069 52. 8. 24.0
109. 7 0.2090 0.7143 52. 8. 26.0
110. 8 0.6667 0.4444 52. 8. 27.0
111. 8 0.6667 0.6667 52. 8. 28.0
112. 8 0.6667 0.6667 52. 8. 29.0
113. 8 0.6667 1.0000 52. 8. 30.0
114. 12 0.6667 0.6667 53. 3. 23.0
115. 6 0.0186 0.0870 53. 4. 0.0
116. 2 0.2390 0.1538 53. 5. 3.0
117. 2 0.2390 0.0917 53. 5. 4.0
118. 2 0.2390 0.1636 53. 5. 5.0
119. 2 0.2390 0.0769 53. 5. 6.0
120. 2 0.2390 0.2083 53. 5. 7.0
121. 5 0.0962 0.3158 53. 5. 8.0
122. 5 0.0962 0.3333 53. 5. 12.0
123. 5 0.0962 1.0000 53. 5. 15.0
124. 4 0.1053 0.0400 53. 6. 5.0
125. 4 0.1053 0.0299 53. 6. 6.0
126. 5 0.0962 0.0920 53. 6. 8.0
127. 5 0.0962 0.0256 • 53. 6. 9.0
128. 5 0.0962 0.0580 53. 6. 10.0
129. 5 0.0962 0.0500 53. 6. 11.0
130. 5 0.0962 0.0645 53. 6. 12.0
131. 5 0.0962 0.1481 53. 6. 13.0
132. 5 0.0962 0.1176 53. 6. 14.0
133. 5 0.0962 0.4000 53. 6. 15.0
134. 5 0.0962 0.4000 53. 6. 16.0
135. 5 0.0962 1.0000 53. 6. 18.0
136. 12 0.6667 1.0000 53. 6. 20.0
137. 6 0.0186 0.0714 53. 7. 16.0
138. 7 0.2090 0.2000 53. 7. 20.0
139. 7 0.2090 0.4615 53. 7. 21.0
140. 7 0.2090 0.2500 53. 7. 22.0
141. 7 0.2090 0.6667 53. 7. 23.0
142. 7 0.2090 0.6667 53. 7. 24.0
143. 9 0.2889 0.6667 53. 7. 28.0
144. 6 0.0186 0.1111 53. 8. 19.0
145. 7 0.2090 0.0714 53. 8. 20.0
146. 7 0.2090 0.1667 53. 8. 22.0
147. 7 0.2090 0.1538 53. 8. 24.0
148. 7 0.2090 0.2000 53. 8. 25.0
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149. 9 0.2889 0.5000 53. 8. 29.0

OUTPUT OF THE PROGRAM : CART-TEST

PROGRAM PURPOSE PROVIDES A SUMMARY OF RESULTS
OBTAINED FROM BUILD AND CASE
PROGRAMS

.

WELCOME TO CART (TM) Version 1.0 November 20, 1984

Copyright (C) 1984 by
961 Yorkshire Ct.
(415) 283-3392

California Statistical Software, Inc.
Lafayette, California 94549

All rights reserved

Summ;iry statistics for a test sample with 149 cases.

Relative error based on tree = 0.120 V- 0. 965
Initial mean absolute deviati on = 0.178
Initial median = 0.154

12 TERMINAL NODES

TC » DMT Ml-! e&MTJTE"

NODE CASES MEDIAN MEAN AD CASES MEDIAN !YIEAN AD MEAN I:rroi

1 1 1.00 0.00E+0O
2 18 0.239 0.51E-01 16 0.160 0.04 95
3 3 0.667 0.16 2 0.800 0.23 23
4 9 0.105 0.36E-01 8 0.640E-01 0.21E-01 04
5 48 0.096 0.50E-01 43 0.111 0.14 14
6 30 0.018 0.38E-01 26 0.189E-01 0.24E-01 024
7 41 0.209 0.88E-01 34 0.211 0.15 15
8 7 0.667 0.12 5 0.667 0.11 11
9 13 0.289 0.91E-01 9 0.333 0.12 14

10 3 1.00 0.11 1 1.00 0.00E+00 00
11 6 0.286 0.91E-01 2 1.00 0.00E+00 71
12 16 0.667 0.19 3 1.00 0.11 22
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OUTPUTS OF THE CART PROGRAMS USING
2ND GENERAL CATEGORIZATION DATA AS INPUT

OUTPUT OF THE PROGRAM : CART- BUILD

| PROGRAM PURPOSE : BUILDING A REGRESSION TREE

INPUT FILE
NAME : BUILD2
CONTENTS : GENERAL MOS CAT. 2 DATA

|

TREE SEQUENCE

Terminal
ee Nodes

1 72
2 71
3 70
4 69
5 68
6 67
7 66
8 65
9 64

10 63
11 62
12 61
13 60
14 58
15 57
16 56
17 53
18 52
19 51
20 50
21 47
22 45
23 44
24 43
25 42
26 39
27 36
28 35
29 34
30 33
31 32
32 30

Cross--Vali dated Re substitution Complexity
Relative Error Relative Error Parameter

0.86 v- 0.000 0.34 0.0
0.86 */- 0.000 0.34 0.002
0.86 +/- 0.000 0.34 0.004
0.86 V- 0.000 0.34 0.008
0.86 */- 0.000 0.34 0.009
0.86 V- 0.000 0.34 0.009
0.86 +/- 0.000 0.34 0.017
0.86 V- 0.000 0.34 0.018
0.86 V- 0.000 0.34 0.023
0.86 +/- 0.000 0.34 0.023
0.86 V- 0.000 0.34 0.025
0.86 V- o.ooo 0.34 0.025
0.86 */- 0.000 0.35 0.030
0.86 V- 0.000 0.35 0.031
0.86 +/- 0.000 0.35 0.033
0.86 V- 0.000 0.35 0.034
0.86 +/- 0.000 0.35 0.042
0.86 +/- 0.000 0.35 0.043
0.86 V- 0.000 0.36 0.043
0.86 V- 0.000 0.36 0.048
0.86 */- 0.000 0.36 0.056
0.85 V- 0.000 0.37 0.065
0.86 +/- 0.000 0.37 0.070
0.86 */- 0.000 0.37 0.079
0.86 +/- 0.000 0.37 0.080
0.86 V- 0.000 0.38 0.081
0.86 V- 0.000 0.39 0.088
0.85 V- 0.000 0.39 0. 114
0.86 V- 0.000 0.40 0. 133
0.87 V- 0.000 0.40 0.141
0.87 V- 0.000 0.40 0.167
0.82 +/- 0.000 0.42 0.179
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33 28
34 27
35 22
36 19
37 17
38 16
39 12
40 11
41 8
42* 6
43 5

44 4
45 3

46 2
47 1

0. 82 +/- 0.000
0.,83 */- 0.000
0.,83 +/- 0.000
0. 82 V- 0.000
0.,82 */- 0.000
0. 84 +/- 0.000
.81 */- 0.000
,78 +/- 0.000
,74 +/- 0.000
,78 V- 0.000
,81 /- 0.000
.87 V- 0.000
.89 +/- 0.000
.89 +/- 0.000

1 .00 V- 0.000

0.43
0.43
0.47

49
51
52
55
56
60
64

0.67
0.71
0.77
0.83
1.00

0.210
0.214
0.242

244
250
303
312
362
410
709
841
1.55
1.91
2.02
5.66

Initial median
Initial mean absolute deviation

= 0.247
= 0.176

CLASSIFICATION/REGRESSION TREE

I

I I

.-- +

I

Terminal Regions

1 2 3 4
PARTITIONING TREE

*

* *

* *

* 1 *

* *

*

* *

94 97

Node 1 was split on variable LOS
A case goes left if variable LOS .le. 1.95E+01
Improvement = 2.9E-02 (C. T. = 5.6E+00)

Node Cases Median Mean Abs Dev.
1 191 0.25 0.18
2 94 0.13 0.11
4 97 0.36 0.18

Surroigate Split A!3soc. Improve.
1 GRADE r 2, 3, 7, 8, 9 .64 1.7E-02
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* •

2 *
* *

* *

*

*

* *

* *

' 4 *

* *

* *

*

2 MOS :

Competitor
1 GRADE
2 MOS

54, 56

Split
0, 1, 4,

54, 55

0.04 5.2E-04

Improve.
1.8E-02
1.9E-03

* Node 2 was split on variable 3RADE
* * A case goes left if variable GRADE is in ( 5)

* * Improvement = 1.0E-02 (C . T. = 1.9E+00
* 2 *

* * • Node Cases Median Mean Abs Dev
* * 2 94 0.13 0.11
* 3 31 0.24 0. 11

* * -3 63 0.81E-01 0.80E-01
* *

31 63
* * Competitor Split Improve

* * 1 LOS 9.50E+00 5.0E-03
* * 2 MOS 54, 55 1.6E-03

* *

* *

* 3 * 3 :

* *

* *

*

* *

* *

* 3 *

* *

* *

*

* *

* *

23 8

Node 3 was split on variable LOS
A case goes left if variable LOS .le. 9.50E+00
Improvement = 4.4E-03 (C. T. = 8.4E-01)

Node
3

-1
-2

Cases
31
23
8

Median
0.24
0.26
0.13

Competitor
1 MOS

Split
54

Mean Abs Dev.
0.11
0.97E-01
0.33E-01

Improve

.

3.3E-04

113



FILE: APPENDIX B Al

*

* *

* 4 *

* *

* *

*

69 28

*

*

* *

* *

5 *

* *

* *

*

Node 4 was split on variable LOS
A case goes left if variable LOS .le. 2.65E+01
Improvement = 1.0E-02 (C. T. = 2.0E+00)

Node
4
5

-6

Cases
97
69
28

Median
0.36
0.29
0.50

Competitor Split
1 GRADE 1, 2, 3

2 MOS 54, 55

Mean Abs Dev.
0.18
0.16
0.17

Improve.
9.8E-03
8.9E-04

* * A CASE GOES LEFT IF VARIABLE GRADE IS IN ( 1, 2, 3)
* *

* 5 *

* *

Improvement = 8.1E-03 (C . T. = 1.5E+00)

Node Cases Median Mean Abs Dev.
* * 5 69 0.29 0.16
* -4 14 0.50 0.13

* *

* *
-5 55 0.26 0. 14

14 55
* Competitor Split Improve

.

* 1 MOS 54, 55 6.7E-04
*_ -- 2 LOS 2.15E+01 5.3E-04

TERMINAL NODES
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Node Cases

23
8

63
14
55
28

Median

263
125
806E-01
500
261
500

Mean Ad

97E-01
33E-01
80E-01
13
14
17

LOS
GRADE
MOS

Relative
Importance

100.
70.
13.

Number Of Minimum
Categories Category
numerical
10
3 54

Number of cases in the learning sample

PRIMARY OPTION SETTINGS

191

construction rule
estimation method
tree selection
variables used

linear combinations

least absolute deviation
5-fold cross-validation

1.0 se rule
See variable importance list above,
response is variable RATE
no

SECONDARY OPTION SETTINGS

Minimum node size
Minimum size below which node will not be split
Number of surrogate splits printed
Number of competing splits printed
Maximum number of trees for which errors are printed
Initial value of the complexity parameter
Maximum number of cases to put into learning sample

8 Maximum number of cases to put into test sample
9 Maximum node size without sub-sampling the node

10 Maximum number of surrogates used
11 Maximum number of nodes allowed for in large tree

(Actual maximum number of nodes
categorical primary + surrogate splits in a tree
linear combination splits in a tree
(Actual number cat. + linear combination splits
(Actual number categorical competitor splits

14 Maximum height of tree
(Actual maximum height of tree

Maximum size of memory available
(Actual size of memory used in run

12 Max
13 Max

1

5

2

2

100
0.0000E+00
20000
20000

192
- 2

750
73)

1000

44)
64)

750
12)

70000
45067)
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OUTPUT OF THE PROGRAM : CART-CASE

| PROGRAM PURPOSE : VALIDATION OF RESULTS

INPUT FILE
NAME : TEST2
CONTENTS : GENERAL MOS CAT. 2 DATA

|

CASE NODE PREDICTED RATE
1. 3 0.0806 0.2500
2. 5 0.2609 1.0000
3. 3 0.0806 0.4000
4. 3 0.0806 0.1538
5. 4 0.5000 1.0000
6. 4 0.5000 1.0000
7. 6 0.5000 0.6667
8. 6 0.5000 0.5000
9. 3 0.0806 0.0952

10. 1 0.2632 0.0317
11. 1 0.2632 0.1356
12. 1 0.2632 0.2282
13. 1 0.2632 0.2162
14. 1 0.2632 0.2250
15. 1 0.2632 0.3684
16. 1 0.2632 0.7500
17. 1 0.2632 0.5714
18. 2 0.1250 0.2857
19. 5 0.2609 1.0000
20. 3 0.0806 0.6667
21. 3 0.0806 0.2154
22. 3 0.0806 0.0455
23. 3 0.0806 0.0244
24. 3 0.0806 0.0563
25. 3 0.0806 0.0253
26. 3 0.0806 0.0294
27. 3 0.0806 0.2439
28. 3 0.0806 0.3448
29. 3 0.0806 0.0870
30. 3 0.0806 0.0800
31. 3 0.0806 0.1379
32. 3 0.0806 0.0833
33. 5 0.2609 0.3750
34. 5 0.2609 . 4444
35. 5 0.2609 0.2857
36. 5 0.2609 0.2222
37. 6 0.5000 0.5000
38. 3 0.0806 0.0488
39. 3 0.0806 0.0364
40. 5 0.2609 0.2857

MOS
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.
54.

GRADE
0.
0.

1.

1.

2.
2.
3.
3.

4.

5.

5.
5.

5.

5.

5.

5.
5.
5.
5.

6.

6.

6.

6.

6.

6.

6.

6.

6.

6.

6.

6.

6.

6.

6.

6.

6.

6.

7.

7.

7.

LOS
11.
23.
13.
14.
22.
25.
28.
30.
0.

2.

3.

4.

5.0
6.0
7.0
8.0
9.0
10.0
20.0
4.0
5.0
6.0
7.

8.

9.

10.
11.
12.
13.0
14.0
15.0
16.0
20.0
21.0
22.0
26.0
28.0
12.0
15.0
20.0
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41. 5 0.2609 0.7143 54. 7. 21.0
42. 5 0.2609 0.6667 54. 7. 23.0
43. 5 0.2609 0.6667 54. 7. 26.0
44. 5 0.2609 0.0500 54. 8. 20.0
45. 5 0.2609 0.0625 54. 8. 21.0
46. 5 0.2609 0.2857 54. 8. 22.0
47. 5 0.2609 0.3636 54. 8. 23.0
48. 5 0.2609 0.1818 54. 8. 24.0
49. 5 0.2609 0.2222 54. 8. 25.0
50. 5 0.2609 0.4000 54. 8. 26.0
51. 6 0.5000 1.0000 55. 3. 30.0
52. 3 0.0806 0.1538 55. 4. 0.0
53. 3 0.0806 0.1053 55. 4. 3.0
54. 1 0.2632 0.1745 55. 5. 3.0
55. 1 0.2632 0.2543 55. 5. 4.0
56. 1 0.2632 0.2105 55. 5. 5.0
57. 1 0.2632 0.1758 55. 5. 6.0
58. 1 0.2632 0.3265 55. 5. 7.0
59. 1 0.2632 0.2400 55. 5. 9.0
60. 2 0.1250 0.1667 55. 5. 10.0
61. 2 0.1250 0.1765 55. 5. 11.0
62. 2 0.1250 0.1538 55. 5. 13.0
63. 2 0.1250 0.6667 55. 5. 16.0
64. 3 0.0806 0.1818 55. 6. 5.0
65. 3 0.0806 0.0460 55. 6. 6.0
66. 3 0.0806 0.0455 55. 6. 7.0
67. 3 0.0806 0.1687 55. 6. 8.0
68. 3 0.0806 0.0217 55. 6. 9.0
69. 3 0.0806 0.0541 55. 6. 11.0
70. 3 0.0806 0.1290 55. 6. 12.0
71. 3 0.0806 0.0597 55. 6. 13.0
72. 3 0.0806 0.0755 55. 6. 14.0
73. 3 0.0806 0.1081 55. 6. 15.0
74. 3 0.0806 0.6667 55. 6. 17.0
75. 3 0.0806 0.8000 55. 6. 19.0
76. 5 0.26C9 1.0000 55. 6. 20.0
77. 3 0.0806 0.0417 55. 7. 15.0
78. 5 0.2609 0.6667 55. 7. 20.0
79. 5 0.2609 0.4000 55. 7. 21.0
80. 5 0.2609 0.6667 55. 7. 22.0
81. 5 0.2609 0.6000 55. 7. 23.0
82. 5 0.2609 0.2500 55. 7. 24.0
83. 5 0.2609 0.8571 55. 7. 25.0
84. 6 0.5000 0.5000 55. 7. 27.0
85. 6 0.5000 0.2857 55. 7. 28.0
86. 6 0.5000 1.0000 55. 7. 30.0
87. 5 0.2609 0.0588 55. 8. 20.0
88. 5 0.2609 0.4000 55. 8. 22.0
89. 5 0.2609 0.3158 55. 8. 23.0
90. 5 0.2609 0.3636 55. 8. 24.0
91. 5 0.2609 0.4444 55. 8. 25.0
92. 5 0.2609 0.1818 55. 8. 26.0
93. 6 0.5000 0.8000 55. 8. 27.0
94. 6 0.5000 0.6667 55. 8. 29.0
95. 6 0.5000 0.6667 55. 8. 30.0
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96. 4 0.5000 0.5000 56. 1. 20.0
97. 4 0.5000 1.0000 56. 1. 22.0
98. 4 0.5000 0.6667 56. 1. 25.0
99. 3 0.0806 0.6667 56. 2. 18.0

100. 4 0.5000 1.0000 56. 2. 20.0
101. 6 0.5000 0.6667 56. 3. 27.0
102. 6 0.5000 0.6667 56. 3. 28.0
103. 6 0.5000 0.8000 56. 3. 30.0
104. 3 0.0806 0.0345 56. 4. 1.0
105. 1 0.2632 0.0571 56. 5. 3.0
106. 1 0.2632 0.2278 56. 5. 4.0
107. 1 0.2632 0.0964 56. 5. 5.0
108. 1 0.2632 0.2807 56. 5. 6.0
109. 1 0.2632 0.4103 56. 5. 7.0
110. 2 0.1250 1.0000 56. 5. 11.0
111. 6 0.5000 1.0000 56. 5. 28.0
112. 3 0.0806 0.7500 56. 6. 5.0
113. 3 0.0806 0.0952 56. 6. 6.0
114. 3 0.0806 0.0870 56. 6. 7.0
115. 3 0.0806 0.0556 56. 6. 8.0
116. 3 0.0806 0.1250 56. 6. 9.0
117. 3 0.0806 0.3333 56. 6. 13.0
118. 3 0.0806 0.1818 56. 6. 14.0
119. 3 0.0806 0.1538 56. 6. 15.0
120. 3 0.0806 0.2000 56. 6. 16.0
121. 5 0.2609 0.3529 56. 6. 20.0
122. 6 0.5000 0.2857 56. 6. 30.0
123. 5 0.2609 0.5000 56. 7. 20.0
124. 5 0.2609 0.6667 56. 7. 22.0
125. 5 0.2609 0.5000 56. 7. 25.0

OUTPUT OF THE PROGRAM : CART-TEST

| PROGRAM PURPOSE : PROVIDES A SUMMARY OF RESULTS

|

OBTAINED FROM BUILD AND CASE
|

PROGRAMS

.

INPUT FILE
NAME : TEST2
CONTENTS : GENERAL MOS CAT. 2 DATA

|

WELCOME TO CART (TM) Version 1.0 November 20, 1984

Copyright (C) 1984 by
961 Yorkshire Ct.
(415) 283-3392

California Statistical Software, Inc.
Lafayette, California 94549

All rights reserved
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Summary statistics for a test sample with 125 cases.

Relative error based on tree = 0.190 +/- 0.444
Initial mean absolute deviation = 0.241
Initial median = 0.286

L 6 TERMINAL NODES

LEARNING SAMPLE TEST SAMPLE
NODE CASES MEDIAN MEAN AD CASES MEDIAN MEAN AD MEAN ERROR

1 23 0.263 0.97E-01 19 0.228 0.11 0.12
2 8 0.125 0.33E-01 6 0.286 0.24 0.28
3 63 0.08 0.80E-01 45 0.105 0.13 0.13
4 14 0.500 0.13 6 1.00 0.14 0.36
5 55 0.261 0.14 34 0.400 0.20 0.24
6 28 0.500 0.17 15 0.667 0.17 0.22
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OUTPUTS OF THE CART PROGRAMS USING
3RD GENERAL CATEGORIZATION DATA AS INPUT

OUTPUT OF THE PROGRAM : CART-BUILD

PROGRAM PURPOSE : BUILDING A REGRESSION TREE

INPUT FILE :

NAME
CONTENTS

BUILD3
GENERAL MOS CAT. 3 DATA

TREE SEQUENCE

Terminal
ee Nodes

1 33
2 32
3 30
4 29
5 28
6 27
7 26
8 25
9 24

10 23
11 22
12. 18
13 14
14 13
15 12
16 11
17 10
18 9
19 6
20 5

21 4
22 3
23* 2
24 1

Cross -Validated Re substitution Complexity
Relative Error Relative Error Parameter

0.65 +/- 0.000 0.25 0.000
0.65 */- 0.000 0.25 0.001
0.65 V- 0.000 0.25 0.004
0.65 V- 0.000 0.26 0.011
0.65 V- 0.000 0.26 0.019
0.65 +/- 0.000 0.26 0.020
0.66 */- 0.000 0.26 0.022
0.65 */- 0.000 0.26 0.026
0.64 V- 0.000 0.27 0.029
0.64 +/- 0.000 0.27 0.032
0.64 v- 0.000 0.27 0.037
0.64 +/- 0.000 0.29 0.050
0.63 +/- 0.000 0.32 0.080
0.63 V- 0.000 0.33 0.105
0.63 +/- 0.000 0.34 0.137
0.64 +/- 0.000 0.35 0.137
0.64 V- 0.000 0.36 0.157
0.65 V- 0.000 0.38 0.204
0.64 +/- 0.000 0.44 0.231
0.65 V- 0.000 0.46 0.263
0.68 V- 0.000 0.51 0.546
0.70 V- 0.000 0.58 0.896
0.68 V- 0.000 0.67 1.09
1.00 -/- 0.000 1.00 3.91

Initial median
Initial mean absolute deviation

= 0.127
= 0.153
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CLASSIFICATION/REGRESSION TREE

+

I

1

Terminal Regions

PARTITIONING TREE

*

• *

* 1 *

* *

* *

* *

47 31
* *

Node 1 was split on variable LOS
A case goes left if variable LOS .le. 1.95E+01
Improvement = 5.0E-02 (C. T. = 3.9E+00)

Node
1

-1
-2

Cases
78
47
31

Surrogate
1 GRADE r

Median
0.13
0.56E-01
0.33

Split
0, 1, 2, 3, 7,

8, 9

Competitor Split
1 GRADE 4, 5, 7

Mean Abs Dev.
0.15
0.52E-01
0.18

Assoc.
0.54

Improve

.

1.5E-02

Improve

.

2.2E-02

2 TERMINAL NODES

Node Cases Median Mean Ad

47
31

0.562E-01
0.329

0.52E-01
0.18

LOS
GRADE
MOS

Relative
Importance

100.
82.
0.

Number Of
Categories
numerical
10

numerical

Minimum
Category

Number of cases in the learning sample 78
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PRIMARY OPTION SETTINGS

construction rule
estimation method
tree selection
variables used

linear combinations

least absolute deviation
5-fold cross-validation

1.0 se rule
See variable importance list above,
response is variable RATE
no

SECONDARY OPTION SETTINGS

1 Minimum node size = 1

2 Minimum size below which node will not be split = 5

3 Number of surrogate splits printed = 2

4 Number of competing splits printed = 2

5 Maximum number of trees for which errors are printed = 100
6 Initial value of the complexity parameter = 0.0000E+00
7 Maximum number of cases to put into learning sample = 20000
8 Maximum number of cases to put into test sample = 20000
9 Maximum node size without sub-sampling the node = 79

10 Maximum number of surrogates used = 2

11 Maximum number of nodes allowed for in large tree = 750
(Actual maximum number of nodes = 34)

12 Max. categorical primary + surrogate splits in a tree = 1000
13 Max. linear combination splits in a tree =

(Actual number cat. + linear combination splits = 9)
(Actual number categorical competitor splits = 7)

14 Maximum height of tree = 750
(Actual maximum height of tree = 10)

Maximum size of memory available = 70000
(Actual size of memory used in run = 43126)

OUTPUT OF THE PROGRAM : CART-CASE

| PROGRAM PURPOSE : VALIDATION OF RESULTS

INPUT FILE
NAME : TEST3
CONTENTS : GENERAL MOS CAT. 3 DATA

|

CASE 1>J0DE PREDICTED RATE MOS GRADE LOS
1. 2 0.3288 0.6667 57.00 3. 26.0
2. 2 0.3288 0.5000 57.00 3. 28.0
3. 2 0.3288 1.0000 57.00 3. 29.0
4. 2 0.3288 0.5000 57.00 3. 30.0
5. 1 0.0562 0.0119 57.00 4. 0.0
6. 1 0.0562 0.0152 57.00 4. 1.0
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7. 1 0.0562 0.0081 57.00 4. 2.0
8. 1 0.0562 0.0107 57.00 4. 3.0
9. 1 0.0562 0.0089 57.00 4. 4.0

10. 1 0.0562 0.0126 57.00 4. 5.0
11. 1 0.0562 0.0357 57.00 4. 6.0
12. 1 0.0562 0.0339 57.00 4. 7.0
13. 1 0.0562 0.0137 57.00 5. 3.0
14. 1 0.0562 0.0207 57.00 5. 4.0
15. 1 0.0562 0.0251 57.00 5. 5.0
16. 1 0.0562 0.0363 57.00 5. 6.0
17. 1 0.0562 0.0351 57.00 5. 7.0
18. 1 0.0562 0.0580 57.00 5. 8.0
19. 1 0.0562 0.0396 57.00 5. 9.0
20. 1 0.0562 0.0247 57.00 5. 10.0
21. 1 0.0562 0.1538 57.00 5. 12.0
22. 1 0.0562 0.1667 57.00 5. 13.0
23. 1 0.0562 0.1996 57.00 6. 5.0
24. 1 0.0562 0.1975 57.00 6. 6.0
25. 1 0.0562 0.1049 57.00 6. 7.0
26. 1 0.0562 0.0896 57.00 6. 8.0
27. 1 0.0562 0.0981 57.00 6. 9.0
28. 1 0.0562 0.0800 57.00 6. 10.0
29. 1 0.0562 0.1436 57.00 6. 11.0
30. 1 0.0562 0.1902 57.00 6. 12.0
31. 1 0.0562 0.1736 57.00 6. 13.0
32. 1 0.0562 0.0909 57.00 6. 14.0
33. 1 0.0562 0.0165 57.00 6. 15.0
34. 1 0.0562 0.0741 57.00 6. 16.0
35. 1 0.0562 0.4000 57.00 6. 17.0
36. 2 0.3288 1.0000 57.00 6. 20.0
37. 1 0.0562 0.0194 57.00 7. 10.0
38. 1 0.0562 0.0280 57.00 7. 11.0
39. 1 0.0562 0.0240 57.00 7. 12.0
40. 1 0.0562 0.0198 57.00 7. 13.0
41. 1 0.0562 0.0056 57.00 7. 14.0
42. 1 0.0562 0.0109 57.00 7. 15.0
43. 1 0.0562 0.0284 57.00 7. 17.0
44. 1 0.0562 0.0108 57.00 7. 18.0
45. 2 0.3288 0.7027 57.00 7. 20.0
46. 2 0.3288 0.2667 57.00 7. 21.0
47. 2 0.3288 0.4000 57.00 7. 22.0
48. 2 0.3288 0.6316 57.00 7. 23.0
49. 2 0.3288 0.7000 57.00 7. 24.0
50. 2 0.3288 0.9091 57.00 7. 25.0
51. 2 0.3288 0.2500 57.00 7. 26.0
52. 2 0.3288 0.6667 57.00 7. 27.0
53. 2 0.3288 1.0000 57.00 7. 29.0
54. 1 0.0562 0.0109 57.00 8. 18.0
55. 1 0.0562 0.0087 57.00 8. 19.0
56. 2 0.3288 0.1014 57.00 8. 20.0
57. 2 0.3288 0.1941 5*7

. 00 8. 21.0
58. 2 0.3288 0.1707 57.00 8. 22.0
59. 2 0.3288 0.2833 57.00 8. 23.0
60. 2 0.3288 0.2292 57.00 8. 24.0
61. 2 0.3288 0.3200 57.00 8. 25.0
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62. 2 0.3288 0.2759 57.00 8. 26.0
63. 2 0.3288 0.3500 57.00 8. 27.0
64. 2 0.3288 0.5455 57.00 8. 28.0
65. 2 0.3288 1.0000 57.00 8. 29.0
66. 2 0.3288 0.5000 57.00 8. 30.0

OUTPUT

| PROGRAM

OF THE

PURPOSE

PROGRAM : CART-TEST

: PROVIDES A SUMMARY
OBTAINED FROM BUILD
PROGRAMS.

OF RESULTS

|

AND CASE
|

WELCOME TO CART (TM)

Copyright (C) 1984 by
961 Yorkshire Ct.
(415) 283-3392

Version 1.0 November 20, 1984

California Statistical Software, Inc.
Lafayette, California 94549

All rights reserved

Summary statistics for a test sample with 66 cases.

Relative error based on tree = 0.415E-01
Initial variance = 0.843E-01
Initial mean = 0.241

1 2 TERMINAL NODES

0.597

LEARNING SAMPLE ---

NODE CASES AVERAGE SD
._„ TEST SAMPLE
CASES AVERAGE SD STD ERROR

47 0.078
31 0.391

0.072
0.24

41
25

0.066 0.80E-01 0.08
0.527 0.28 0.31
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OUTPUTS OF THE CART PROGRAMS USING
4TH GENERAL CATEGORIZATION DATA AS INPUT

OUTPUT OF THE PROGRAM : CART- BUILD

| PROGRAM PURPOSE : BUILDING A REGRESSION TREE

INPUT FILE .

NAME : BUILD4
CONTENTS : GENERAL MOS CAT. 4 DATA

|

TREE SEQUENCE

Terminal
ee Nodes

1 141
2 140
3 139
4 138
5 137
6 136
7 135
8 134
9 132

10 131
11 129
12 128
13 127
14 124
15 123
16 122
17 121
18 119
19 118
20 117
21 115
22 112
23 111
24 110
25 109
26 107
27 106
28 105
29 104
30 102
31 100
32 99

Cross -Vali dated Re substitution Complexity
Relative Error Relative Error Parameter

0.89 */- 0.000 0.29 0.000
0.88 V- 0.000 0.29 0.005
0.88 V- 0.000 0.29 0.009
0.88 V- 0.000 0.29 0.011
0.88 V- 0.000 0.29 0.013
0.88 */- 0.000 0.29 0.019
0.88 /- 0.000 0.29 0.028
0.88 +/- 0.000 0.29 0.028
0.88 */~ 0.000 0.29 0.029
0.88 */- 0.000 0.29 0.030
0.88 V- 0.000 0.30 0.030
0.88 /- 0.000 0.30 0.031
0.88 */- 0.000 0.30 0.036
0.88 V- 0.000 0.30 0.037
0.88 +/- 0.000 0.30 0.044
0.88 */- 0.000 0.30 0.047
0.88 */- 0.000 0.30 0.055
0.88 V- 0.000 0.30 0.056
0.88 V- 0.000 0.30 0.056
0.89 +/- 0.000 0.30 0.057
0.89 /- 0.000 0.30 0.065
0.88 V- 0.000 0.31 0.066
0.88 */- 0.000 0.31 0.073
0.88 V- 0.000 0.31 0.076
0.88 V- 0.000 0.31 0.077
0.88 +/- 0.000 0.31 0.078
0.88 V- 0.000 0.31 0.083
0.88 V- 0.000 0.31 0.089
0.88 +/- 0.000 0.32 0.095
0.88 +/- 0.000 0.32 0.097
0.88 +/- 0.000 0.32 0.101
0.88 +/- 0.000 0.32 0.114
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33 98 0.88 */' 0.000 0.32
34 97 0.87 */' 0.000 0.33
35 94 0.88 V- 0.000 0.33
36 93 0.89 V- 0.000 0.33
37 91 0.88 */- 0.000 0.34
38 90 0.88 V- 0.000 0.34
39 89 0.88 */- 0.000 0.34
40 87 0.88 +/- 0.000 0.34
41 85 0.88 +/- 0.000 0.35
42 81 0.88 +/- 0.000 0.36
43 76 0.88 v- 0.000 0.37
44 75 0.87 +/- 0.000 0.37
45 74 0.88 V- 0.000 0.37
46 72 0.88 V- 0.000 0.38
47 71 0.87 +/- 0.000 0.38
48 70 0.88 V- 0.000 0.38
49 69

'

0.88 */- 0.000 0.38
50 67 0.88 */- 0.000 0.39
51 65 0.87 V- 0.000 0.39
52 64 0.87 V- 0.000 0.40
53 63 0.86 V- 0.000 0.40
54 58 0.86 V- 0.000 0.41
55 57 0.86 +/- 0.000 0.42
56 56 0.86 V- 0.000 0.42
57 55 0.86 V- 0.000 0.42
58 54 0.84 V- 0.000 0.43
59 52 0.83 */' 0.000 0.43
60 51 0.85 */' 0.000 0.44
61 50 0.84 V- 0.000 0.44
62 49 0.84 v- 0.000 0.45
63 48 0.84 V- 0.000 0.45
64 44 0.85 V- 0.000 0.47
65 42 0.85 V- 0.000 0.48
66 37 0.85 V- 0.000 0.50
67 34 0.85 V- 0.000 0.52
68 32 0.86 V- 0.000 0.53
69 31 0.85 V- 0.000 0.54
70 30 0.86 V- 0.000 0.54
71 26 0.85 V- 0.000 0.57
72 25 0.85 .+/- 0.000 0.58
73 22 0.85 +/- 0.000 0.60
74 21 0.86 V- 0.000 0.60
75 20 0.86 +/- 0.000 0.61
76 17 0.85 V- 0.000 0.63
77 16 0.85 +/- 0.000 0.64
78 15 0.84 V- 0.000 0.65
79 14 0.86 V- 0.000 0.66
80* 13 0.86 +/- 0.000 0.67
81 11 0.89 +/- 0.000 0.69
82 10 0.89 -/- 0.000 0.70
83 9 0.88 +/- 0.000 0.71
84 8 0.89 V- 0.000 0.73
85 7 0.89 V- 0.000 0.74
86 6 0.91 +/- 0.000 0.77
87 3 0.91 +/- 0.000 0.85

0.114
0.122
0.124
0.132
0.133
0.138
0.140
0.143
0.149
0.151
0.157
0.159
0.167
0.167
0.169
0.178
0.186
0.190
0.192
0.200
0.210
0.223
0.226
0.229
0.239
0.244
0.250
0.276
0.333
0.335
0.341
0.358
0.381
0.389
0.393
0.394
0.435
0.460
0.495
0.500
0.510
0.516
0.524
0.534
0.542
0.620
0.639
0.772
0.827
0.829
0.873
1.12
1.28
1.94
2.11
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88 2 0.90 V- 0.000
89 1 1.00 */- 0.000

Initial median
Initial mean absolute deviation

0.90
1.00

= 0.263
= 0.185

3.19
7.66

CLASSIFICATION/REGRESSION TREE

+ -

I

+.-4—

+

I I

I

I

• 5-- +

I

.- +

I

.-6—
I

—.7.

+--
I

.g__.

I

• 8--

I

I

+-11--+
I I

I

+ -12-
I

Terminal Regions

12 3 4 5 6 7 8 9
PARTITIONING TREE

10 11 12 13

*

* *

* *

1 *

* *

* *

*

* *

Node 1 was split on variable LOS
A case goes left if variable LOS .le. 1.95E+01
Improvement = 1.9E-02 (C. T. = 7.6E+00)

Node
1

2
8

Cases
403
177
226

Median
0.26
0.15
0.33

Mean Abs Dev.
0. 19
0. 15
0. 18

177 226

*

* *

*

Surrogate
1 GRADE
2 MOS

Competitor
1 GRADE
2 MOS

Split
2, 3, 7,

58, 59,
61, 62,

8,

60,
64

Split
0, 1, 5,
62

Assoc

.

0.50
0.13

Improve

.

1.0E-02
5.6E-04

Improve

.

1.2E-02
7.2E-03
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* Node 2 was split on variable LOS
* * A case goes left if variable LOS .le. 8.50E+00

* * Improvement = 3.6E-03 (C. T. = 2.1E+00)
* 2 *

* * Node Cases Median Mean Abs Dev.
* * 2 177 0.15 0. 15
* 3 84 0.22 0. 19

*

•it

*

*
6 93 0.11 0. 92E-01

84 93
* * Surrogate Split Assoc

.

Improve.
* * 1 GRADE r 0, 1, 2, 3, 6, 0.38 2.3E-03

* * 7, 8, 9
* * * * 2 MOS r 58, 59, 60, 0. 14 1.5E-03

* * * * 61, 64
* 3 * * 6 *

* * * * Compet:Ltor Split Improve.
* * * * 1 MOS 58, 59, 60 3.0E-03
• * 2 GRADE 4 2.8E-03

* *

F *

3 *

r *

*

* *

*

16
*

*

*

* *

• *

r 4 *

* *

*

68

*

*

* *

r *

5 *

r *

* *

Node 3 was split on variable GRADE
A case goes left if variable GRADE is in ( 1, 4)
Improvement = 2.2E-03 (C. T. = 2.4E+00)

Node
3

4
5

Cases
84
16
68

Median
0.22
0.67
0.22

Surrogate Split
1 LOS s 1.50E+00

Competitor Split
1 MOS 58, 59, 60,

61
2 LOS 5.00E-01

Mean Abs Dev.
0.19
0.34
0.15

Assoc

.

0.25
Improve

.

-4.2E-08

Improve.
1.8E-03

1.5E-03

Node 4 was split on variable MOS
A CASE GOES LEFT IF VARIABLE MOS IS IN ( 58, 59, 60)

Improvement = 9.8E-03 (C. T. = 3.9E+00)

128



FILE: APPENDIX D Al

* 4 *

* *

*

* *

* *

Node Cases
4 16

-1 7
-2 9

Median
0.67
0.23E-
0.80

01

Mean Abs Dev
0.34
0.64E-01
0.12

7
*

*

9
*

* 1

Surrogate
LOS s

Split
2.50E+00

Assoc. Improve
0.14 2.1E-03

I 1 I 2 ]

1

Competitor
LOS

Split
2.50E+00

Improve
2.1E-03

Node 5 was split on variable MOS
A CASE GOES LEFT IF VARIABLE MOS IS IN ( 58, 59, 61, 63

Improvement = 2.1E-03 (C. T. = 8.7E-01)

Node
5

-3
-4

Cases
68
44
24

Median
0.22
0.18
0.29

Mean Abs Dev.
0.15
0.12
0. 16

44 24
Competitor

1 GRADE
2 LOS

Split

5.50E+00

Improve

.

3.0E-04
1.3E-04

Node 6 was split on variable MOS
A CASE GOES LEFT IF VARIABLE MOS IS IN |

Improvement = 1.8E-03 (C.

6 *

*

58, 59, 60, 61
T. = 8.2E-01)

Node Cases Median Mean Abs Dev.
6 93 0.11 0.92E-01
7 65 0.80E-01 0.92E-01

-7 28 0.18 0.67E-01

65 28
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*

*

* *

7 *

* *

*

Surrogate Split
1 GRADE r 3, 4, 7, 8, 9

Competitor Split
1 GRADE 4
2 LOS 1.55E+01

Assoc.
0.03

Improve.
7.9E-06

Improve.
1.1E-03
7.6E-04

* *

* *

* 7 *

* *

*

* *

* *

1 64
* *

* *

Node 7 was split on variable GRADE
A case goes left if variable GRADE is in ( 4)
Improvement = 2.2E-03 (C. T. = 9.2E-01)

Node
7

-5
-6

Cases
65
1

64

Median
0.80E-01
1.0

0.80E-01

Competitor
1 MOS
2 LOS

Split
60

1.55E+01

Mean Abs Dev.
0.92E-01
0.00E+00
0.79E-01

Improve.
6.3E-04
2.2E-04

* *

* *

' 8 *

* *

* *

* *

* *

204

*

*

9 *

22
*

I I

I I

I 13 I

I I

Node 8 was split on variable LOS
A case goes left if variable LOS .le. 2.95E+01
Improvement = 7.9E-03 (C. T. = 3.2E+00)

Node
8
9

-13

Cases
226
204
22

Median
0.33
0.32
0.67

Competitor
1 MOS

2 GRADE

Split
58, 59,

61, 63
5, 6

60,

Mean Abs Dev.
0.18
0.16
0.18

Improve.
5.7E-03

3.3E-03
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* *

*

9 *

173
*

31

*

*

* *

t i

10

Node 9 was split on variable MOS
A CASE GOES LEFT IF VARIABLE MOS IS IN ( 58, 59, 60,

61, 63)
Improvement = 4.8E-03 (C. T. = 1.9E+00)

Mean Abs Dev.
0.16
0.15
0.20

Node Cases Median
9 204 0.32

10 173 0.29
12 31 0.50

Competitor Split
1 GRADE 2, 3, 5, 6,

7, 8

2 LOS 2.05E+01

Improve

.

2.5E-03

2.0E-03
12

* *

*

r *

10 *

r *

* *

*

* *

Node 10 was split on variable GRADE
A CASE GOES LEFT IF VARIABLE GRADE IS IN (2, 3, 5, 6,

7, 8)

169

Improvement = 2.7E-03 (C. T. = 1.1E+00)

Node Cases
10 173
11 169

-10 4

Median
0.29
0.29
1.0

Mean Abs Dev.
0.15
0.14
0.22

Competitor
1 LOS
2 MOS

Split
2.75E+01
58

Improve

.

2.0E-03
4.8E-04

11 * 10

*
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*

* *

* *

* 11 *

* *

* *

* *

* *

148 21

Node 11 was split on variable LOS
A case goes left if variable LOS .le. 2.75E+01
Improvement = 2.0E-03 (C. T. = 8.2E-01)

Node
11
-8
-9

Cases
169
148
21

Competitor
1 GRADE
2 MOS

Median
0.29
0.29
0.43

Split
5

58

Mean Abs Dev.
0.14
0.13
0.14

Improve.
7.9E-04
7.0E-04

*

* *

* *

* 12 *

* *

* *

* *

9 22
* *

* *

11 12

Node 12 was split on variable GRADE
A case goes left if variable GRADE is in ( 6)
Improvement = 3 . 1E-03 (C. T. = 1.2E+00)

Node
12

-11
-12

Cases
31
9

22

Median
0.50
0.22
0.67

Mean Ab:
0.20
0.15
0.16

Dev.

Competitor
1 LOS

Split
2.55E+01

Improve

,

1.6E-03

1 13 TERMINAL NODES

Node Cases Median Mean Ad

1 7 227E-01 0.64E-01
2 9 800 0.12
3 44 177 0.12
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4 24 0.286 0. 16
5 1 1.00 0. 00E+00
6 64 0.800E -01 0. 79E--01

7 28 0.182 0. 67E--01

8 148 0.286 0. 13
9 21 0.429 0. 14

10 4 1.00 0..22

11 9 0.222 0.,15
12 22 0.667 0. 16
13 22 0.667 0,.18

Re lative Number Of Minimum
Importance Categories Category

LOS 100. numerical
GRADE 76. 10
MOS 62. 7 58

Number of cases in the learning sample

PRIMARY OPTION SETTINGS

403

construction rule
estimation method
tree selection
variables used

linear combinations

least absolute deviation
5-fold cross-validation

1.0 se rule
See variable importance list above.
response is variable RATE
no

SECONDARY OPTION SETTINGS

1 Minimum node size = 1

2 Minimum size below which node will not be split = 5

3 Number of surrogate splits printed = 2

4 Number of competing splits printed = 2

5 Maximum number of trees for which errors are printed = 100
6 Initial value of the complexity parameter = 0.0000E+00
7 Maximum number of cases to put into learning sample = 20000
8 Maximum number of cases to put into test sample = 20000
9 Maximum node size without sub-sampling the node = 404

10 Maximum number of surrogates used = 2

11 Maximum number of nodes allowed for in large tree = 750
(Actual maximum number of nodes = 142)

12 Max. categorical primary + surrogate splits in a tree = 1000
13 Max. linear combination splits in a tree =

(Actual number cat. + linear combination splits = 104)
(Actual number categorical competitor splits = 156)

14 Maximum height of tree = 750
(Actual maximum height of tree = 16)

Maximum size of memory available = 70000
(Actual size of memory used in run = 48762)
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OUTPUT OF THE PROGRAM : CART-CASE

PROGRAM PURPOSE : VALIDATION OF RESULTS

INPUT FILE :

NAME : TEST4
CONTENTS : GENERAL MOS CAT. 4 DATA

CASE NODE PREDICTED RATE
1. 1 0.0227 0.2857
2. 6 0.0800 0.0952
3. 6 0.0800 0.0870
4. 6 0.0800 0.1429
5. 10 1.0000 0.5000
6. 8 0.2857 1.0000
7. 8 0.2857 0.5000
8. 8 0.2857 0.6667
9. 8 0.2857 0.1818

10. 8 0.2857 0.2857
11. 13 0.6667 0.2000
12. 1 0.0227 1.0000
13. 1 0.0227 0.5000
14. 3 0.1772 0.0417
15. 3 0.1772 0.1739
16. 3 0.1772 0.3448
17. 3 0.1772 0.1351
18. 3 0.1772 0.3590
19. 3 0.1772 0.0714
20. 3 0.1772 0.1176
21. 6 0.0800 0.1333
22. 6 0.0800 0.0714
23. 6 0.0800 0.0488
24. 6 0.0800 0.1667
25. 8 0.2857 0.1667
26. 8 0.2857 1.0000
27. 3 0.1772 0.5000
28. 3 0.1772 0.1034
29. 3 0.1772 0.0377
30. 3 0.1772 0.0370
31. 6 0.0800 0.0333
32. 6 0.0800 0.1333
33. 6 0.0800 0.5714
34. 6 0.0800 0.0952
35. 8 0.2857 0.3448
36. 8 0.2857 0.0833
37. 8 0.2857 0.1053
38. 8 0.2857 0.1111
39. 8 0.2857 0.2857
40. 6 0.0800 0.2000
41. 6 0.0800 0.2667
42. 6 0.0800 0.0645
43. 8 0.2857 0.7500

MOS
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.

GRADE
1.

1.

1.

1.

1.

2.
3.

3.

3.

3.

3.

4.

4.

5.

5.

5.

5.

5.

5.

5.

5.

5.

5.

5.
5.

5.

6.

6.

6.

6.

6.

6.

6.

6.

6.

6.

6.

6.

6.

7.

7.

7.

7.

LOS
8.0
9.0
10.0
11.0
21.
23.
20.
22.
25.
26.
30.0
0.0
6.

2,

3.

4.

5.

6.

7.

8.

9.

10.
12.
13
20.
21,
5.

6.0
7.0
8.

9.

11.
12.
14.
20.
21.
23.
24.
26.
10.0
12.0
14.0
20.0
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44. 8 0.2857 0.6667 58. 7. 21.0
45. 8 0.2857 0.7500 58. 7. 22.0
46. 8 0.2857 0.4000 58. 7. 23.0
47. 8 0.2857 0.4444 58. 7. 24.0
48. 8 0.2857 0.6667 58. 7. 25.0
49. 8 0.2857 0.2857 58. 7. 27.0
50. 9 0.4286 0.5000 58. 7. 29.0
51. 8 0.2857 0.6667 58. 8. 21.0
52. 9 0.4286 0.6000 58. 8. 28.0
53. 9 0.4286 0.5000 58. 8. 29.0
54. 13 0.6667 0.3333 58. 8. 30.0
55. 6 0.0800 0.1429 59. 0. 14.0
56. 6 0.0800 0.3333 59. 1. 10.0
57. 6 0.0800 0.2500 59. 1. 15.0
58. 10 1.0000 1.0000 59. 1. 22.0
59. 10 1.0000 1.0000 59. 1. 25.0
60. 8 0.2857 0.8000 59. 2. 21.0
61. 8 0.2857 0.6667 59. 3. 23.0
62. 8 0.2857 0.2500 59. 3. 27.0
63. 9 0.4286 0.5000 59. 3. 28.0
64. 13 0.6667 0.4000 59. 3. 30.0
65. 5 1.0000 1.0000 59. 4. 11.0
66. 3 0.1772 0.3750 59. 5. 3.0
67. 3 0.1772 0.1818 59. 5. 4.0
68. 3 0.1772 0.1765 59. 5. 5.0
69. 3 0.1772 0.0769 59. 5. 6.0
70. 3 0.1772 0. 1429 59. 5. 7.0
71. 6 0.0800 0.2857 59. 5. 10.0
72. 6 0.0800 0.2222 59. 5. 11.0
73. 3 0.1772 0.1429 59. 6. 5.0
74. 3 0.1772 0.1667 59. 6. 6.0
75. 3 0.1772 0.1333 59. 6. 7.0
76. 3 0.1772 0.0435 59. 6. 8.0
77. 6 0.0800 0.0488 59. 6. 9.0
78. 6 0.0800 0.0952 59. 6. 11.0
79. 6 0.0800 0.1333 59. 6. 12.0
80. 6 0.0800 0.2500 59. 6. 13.0
81. 6 0.0800 0.0833 59. 6. 14.0
82. 6 0.0800 0.2500 59. 6. 17.0
83. 8 0.2857 0.3478 59. 6. 20.0
84. 8 0.2857 0.1176 59. 6. 21.0
85. 8 0.2857 0.3077 59. 6. 22.0
86. 8 0.2857 0.3636 59. 6. 23.0
87. 8 0.2857 0.4000 59. 6. 24.0
88. 8 0.2857 0.3333 59. 6. 26.0
89. 9 0.4286 1.0000 59. 6. 29.0
90. 6 0.0800 0.3333 59. 7. 10.0
91. 8 0.2857 0.6667 59. 7. 20.0
92. 8 0.2857 0.1818 59. 7. 21.0
93. 8 0.2857 0.5000 59. 7. 24.0
94. 8 0.2857 0.2857 59. 7. 25.0
95. 8 0.2857 0.1818 59. 7. 26.0
96. 8 0.2857 0.5000 59. 7. 27.0
97. 13 0.6667 0.8000 59. 7. 30.0
98. 8 0.2857 0.6667 59. 8. 24.0
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99. 8 0.2857 0.6667 59. 8. 26.0
100. 8 0.2857 0.2000 59. 8. 27.0
101. 9 0.4286 0.2857 59. 8. 28.0
102. 6 0.0800 0.0769 60. 1. 12.0
103. 6 0.0800 0.0952 60. 1. 13.0
104. 6 0.0800 0.0909 60. 1. 14.0
105. 8 0.2857 0.6667 60. 3. 20.0
106. 8 0.2857 1.0000 60. 3. 22.0
107. 8 0.2857 0.5000 60. 3. 25.0
108. 9 0.4286 0.4000 60. 3. 28.0
109. 13 0.6667 0.3333 60. 3. 30.0
110. 1 0.0227 0.0227 60. 4. 1.0
111. 1 0.0227 0.0769 60. 4. 2.0
112. 4 0.2857 0.0138 60. 5. 2.0
113. 4 0.2857 0.2476 60. 5. 3.0
114. 4 0.2857 0.2311 60. 5. 4.0
115. 4 0.2857 0.1667 60. 5. 5.0
116. 4 0.2857 0.3636 60. 5. 6.0
117. 4 0.2857 0.3390 60. 5. 7.0
118. 4 0.2857 0.1081 60. 5. 8.0
119. 6 0.0800 0.2857 60. 5. 9.0
120. 8 0.2857 1.0000 60. 5. 22.0
121. 4 0.2857 0.3729 60. 6. 5.0
122. 4 0.2857 0.1754 60. 6. 6.0
123. 4 0.2857 0.0593 60. 6. 7.0
124. 4 0.2857 0.0240 60. 6. 8.0
125. 6 0.0800 0.0874 60. 6. 9.0
126. 6 0.0800 0.0429 60. 6. 10.0
127. 6 0.0800 0. 1333 60. 6. 11.0
128. 6 0.0800 0.1429 60. 6. 12.0
129. 6 0.0800 0.0345 60. 6. 13.0
130. 6 0.0800 0.0597 60. 6. 14.0
131. 6 0.0800 0.0645 60. 6. 15.0
132. 6 0.0800 0.0513 60. 6. 16.0
133. 6 0.0800 0.2857 60. 6. 18.0
134. 8 0.2857 0.2857 60. 6. 20.0
135. 8 0.2857 0.1429 60. 6. 21.0
136. 8 0.2857 0.1538 60. 6. 22.0
137. 8 0.2857 0.2857 60. 6. 23.0
138. 8 0.2857 0.4000 60. 6. 25.0
139. 6 0.0800 0.0444 60. 7. 11.0
140. 6 0.0800 0.0339 60. 7. 12.0
141. 6 0.0800 0.0690 60. 7. 16.0
142. 8 0.2857 . 4444 60. 7. 20.0
143. 8 0.2857 0.2500 60. 7. 21.0
144. 8 0.2857 0.7500 60. •

7. 22.0
145. 8 0.2857 0.2500 60. 7. 23.0
146. 8 0.2857 0.4000 60. 7. 24.0
147. 8 0.2857 0.2500 60. 7. 25.0
148. 8 0.2857 0.5000 60. 7. 26.0
149. 9 0.4286 0.5000 60. 7. 29.0
150. 8 0.2857 0.1481 60. 8. 20.0
151. 8 0.2857 0.1538 60. 8. 21.0
152. 8 0.2857 0.4167 60. 8. 22.0
153. 8 0.2857 0.0870 60. 8. 23.0
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154. 8 0.2857 0.4706 60. 8. 24.0
155. 8 0.2857 0.1429 60. 8. 25.0
156. 8 0.2857 0.5000 60. 8. 27.0
157. 9 0.4286 0.3333 60. 8. 28.0
158. 9 0.4286 0.1818 60. 8. 29.0
159. 13 0.6667 0.8000 60. 8. 30.0
160. 6 0.0800 0.3077 61. 1. 10.0
161. 10 1.0000 0.6667 61. 1. 20.0
162. 8 0.2857 0.8000 61. 3. 20.0
163. 8 0.2857 0.6667 61. 3. 23.0
164. 8 0.2857 0.6667 61. 3. 26.0
165. 13 0.6667 0.6667 61. 3. 30.0
166. 2 0.8000 0.0526 61. 4. 1.0
167. 3 0.1772 0.1000 61. 5. 3.0
168. 3 0.1772 0.1446 61. 5. 4.0
169. 3 0.1772 0. 1000 61. 5. 5.0
170. 3 0.1772 0."2979 61. 5. 6.0
171. 3 0.1772 0.3478 61. 5. 7.0
172. 6 0.0800 0.1333 61. 5. 10.0
173. 8 0.2857 0.4000 61. 5. 20.0
174. 3 0.1772 0.4615 61. 6. 5.0
175. 3 0.1772 0.0976 61. 6. 6.0
176. 3 0.1772 0.0526 61. 6. 8.0
177. 6 0.0800 0.1538 61. 6. 9.0
178. 6 0.0800 0.1111 61. 6. 11.0
179. 6 0.0800 0.1538 61. 6. 16.0
180. 8 0.2857 0.4000 61. 6. 20.0
181. 8 0.2857 0.2500 61. 6. 23.0
182. 6 0.0800 0.1667 61. 7. 12.0
183. 8 0.2857 0.8000 61. 7. 20.0
184. 8 0.2857 0.5714 61. 7. 22.0
185. 8 0.2857 1.0000 61. 7. 24.0
186. 9 0.4286 0.8571 61. 7. 28.0
187. 8 0.2857 0.2000 61. 8. 21.0
188. 8 0.2857 0.2857 61. 8. 22.0
189. 8 0.2857 0.8000 61. 8. 23.0
190. 8 0.2857 0.5714 61. 8. 26.0
191. 8 0.2857 0.5000 61. 8. 27.0
192. 9 0.4286 0.6667 61. 8. 29.0
193. 4 0.2857 0.4615 62. 5. 3.0
194. 4 0.2857 0.2500 62. 5. 4.0
195. 4 0.2857 0.6667 62. 5. 5.0
196. 4 0.2857 0.5000 62. 5. 6.0
197. 7 0.1818 0.2857 62. 6. 10.0
198. 7 0.1818 0.8000 62. 6. 13.0
199. 7 0.1818 1.0000 62. 6. 17.0
200. 11 0.2222 0.6667 62. 6. 21.0
201. 13 0.6667 0.5000 62. 6. 30.0
202. 12 0.6667 1.0000 62. 7. 22.0
203. 12 0.6667 1.0000 62. 8. 23.0
204. 13 0.6667 1.0000 63. 3. 30.0
205. 2 0.8000 0.2069 63. 4. 0.0
206. 2 0.8000 0.7059 63. 4. 1.0
207. 2 0.8000 0.8571 63. 4. 2.0
208. 2 0.8000 1.0000 63. 4. 3.0
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209. 2 0.8000 1.0000 63. 4. 4.0
210. 2 0.8000 1.0000 63. 4. 5.0
211. 2 0.8000 1.0000 63. 4. 7.0
212. 2 0.8000 1.0000 63. 4. 8.0
213. 7 0.1818 1.0000 63. 4. 9.0
214. 3 0.1772 0.0488 63. 5. 3.0
215. 3 0.1772 0.0385 63. 5. 4.0
216. 3 0.1772 0.1765 63. 5. 5.0
217. 3 0.1772 0.3571 63. 5. 6.0
218. 3 0.1772 0.1290 63. 5. 7.0
219. 7 0.1818 0.5000 63. 5. 10.0
220. 3 0.1772 0.5263 63. 6. 3.0
221. 3 0.1772 0.1667 63. 6. 4.0
222. 3 0.1772 0.1918 63. 6. 5.0
223. 3 0.1772 0.1852 63. 6. 6.0
224. 3 0.1772 0.1839 63. 6. 7.0
225. 3 0il772 0.1250 63. 6. 8.0
226. 7 0.1818 0.1702 63. 6. 9.0
227. 7 0.1818 0.1892 63. 6. 10.0
228. 7 0.1818 0.1290 63. 6. 11.0
229. 7 0.1818 0.1429 63. 6. 12.0
230. 7 0.1818 0.1250 63. 6. 13.0
231. 7 0.1818 0.6667 63. 6. 15.0
232. 8 0.2857 0.5000 63. 6. 21.0
233. 7 0.1818 0.1111 63. 7. 10.0
234. 7 0.1818 0.0308 63. 7. 11.0
235. 7 0.1818 0.0800 63. 7. 12.0
236. 7 0.1818 0.0571 63. 7. 13.0
237. 7 0.1818 0.0408 63. 7. 14.0
238. 8 0.2857 0.6667 63. 7. 20.0
239. 8 0.2857 1.0000 63. 7. 22.0
240. 8 0.2857 0.6667 63. 7. 27.0
241. 13 0.6667 1.0000 63. 7. 30.0
242. 8 0.2857 0.0571 63. 8. 20.0
243. 9 0.4286 0.4000 63. 8. 28.0
244. 12 0.6667 1.0000 64. 0. 22.0
245. 7 0.1818 0.2222 64. 1. 17.0
246. 4 0.2857 0.3810 64. 5. 3.0
247. 4 0.2857 0.2609 64. 5. 4.0
248. 4 0.2857 0.0800 64. 5. 5.0
249. 4 0.2857 0.2000 64. 5. 7.0
250. 4 0.2857 0.2857 64. 5. 8.0
251. 7 0.1818 0.6667 64. 5. 11.0
252. 4 0.2857 1.0000 64. 6. 4.0
253. 7 0.1818 0.3636 64. 6. 10.0
254. 7 0.1818 0.2000 64. 6. 11.0
255. 11 0.2222 0.2857 64. 6. 20.0
256. 11 0.2222 0.1429 64. 6. 22.0
257. 11 0.2222 0.1429 64. 6. 23.0
258. 11 0.2222 0.1053 64. 6. 24.0
259. 11 0.2222 0.4615 64. 6. 25.0
260. 12 0.6667 0.3636 64. 7. 21.0
261. 12 0.6667 0.2500 64. 7. 22.0
262. 12 0.6667 0.2222 64. 7. 23.0
263. 12 0.6667 0.6667 64. 7. 26.0
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264. 12 0.6667 0.4000 64. 7. 27.0
265. 12 0.6667 1.0000 64. 7. 28.0
266. 13 0.6667 0.4000 64. 7. 30.0
267. 12 0.6667 1.0000 64. 8. 25.0

OUTPUT OF THE PROGRAM : CART-TEST

PROGRAM PURPOSE PROVIDES A SUMMARY OF RESULTS
OBTAINED FROM BUILD AND CASE
PROGRAMS

.

WELCOME TO CART (TM)

Copyright (C) 1984 by
961 Yorkshire Ct.
(415) 283-3392

Version 1.0 November 20, 1984

California Statistical Software, Inc.
Lafayette, California 94549

All rights reserved

Summary statistics for a test sample with 267 cases.

Relative error based on tree = 0.185
Initial mean absolute deviation = 0.232
Initial median = 0.286

L 13 TERMINAL NODES

+/- 0.727

LEARNING SAMPLE
NODE CASES MEDIAN MEAN AD

1 7 0.227E-01 0.64E-01

CASES MEDIAN

2 9 0.800 12
3 44 0.177 0. 12
4 24 0.286 16
5 1 1.00 00E+00
6 64 0.800E-01 79E-01
7 28 0.182 67E-01
8 148 0.286 13
9 21 0.429 14
10 4 1.00 22
11 9 0.222 15
12 22 0.667 16
13 22 0.667 18

5

9

39
21
1

48
20
80
13
4
6

10
11

0.286
00
143
250
00
133
200

0.417
0.500
1.00
0.286
1.00
0.500

AN AD MEAN ERROR

0.28 0.35
0.24 0.28
0.94E-•01 0.09
0.16 0. 16
0.00E+00 0.00
0.78E-01 0.08
0.23 0.23
0.22 0.24
0.16 0. 17
0.21 0.21
0.17 0.17
0.31 0.31
0.24 0.25

139



APPENDIX E

OUTPUTS OF THE CART PROGRAMS USING
5TH GENERAL CATEGORIZATION DATA AS INPUT

OUTPUT OF THE PROGRAM : CART-BUILD

| PROGRAM PURPOSE : BUILDING A REGRESSION TREE

INPUT FILE
NAME : BUILD5
CONTENTS : GENERAL MOS CAT. 5 DATA

|

TREE SEQUENCE

Terminal
ee Nodes

1 50
2 49
3 48
4 47
5 46
6 45
7 44
8 43
9 42

10 39
11 36
12 33
13 32
14 30
15 29
16 28
17 26
18 25
19 22
20 21
21 20
22 19
23 14
24 13
25 11
26 9

27 8
28 7

29 5

30 4
31 2

Cross -Validated Resubstitution Complexity
Relative Error Relative Error Parameter

1.01 /- 0.000 0.34 0.000
1.01 */- 0.000 0.34 0.006
1.01 +/- 0.000 0.34 0.033
1.00 V- 0.000 0.35 0.040
1.00 V- 0.000 0.35 0.062
1.00 V- 0.000 0.35 0.066
1.00 +/- 0.000 0.35 0.068
1.00 +/- 0.000 0.36 0.071
1.00 v- 0.000 0.36 0.083
1.01 +/- 0.000 0.37 0.081
1.01 V- 0.000 0.38 0.088
1.01 V- 0.000 0.39 0.097
1.01 V- 0.000 0.39 0.099
1.00 V- 0.000 0.40 0.126
0.99 v- 0.000 0.41 0.157
0.98 */- 0.000 0.42 0.200
0.97 v- 0.000 0.43 0.219
0.97 */- 0.000 0.44 0.222
0.98 V- 0.000 0.47 0.247
0.98 V- 0.000 0.48 0.261
0.98 /- 0.000 0.49 0.271
0.96 V- 0.000 0.50 0.333
0.98 V- 0.000 0.56 0.336
0.97 V- 0.000 0.58 0.396
0.98 V- 0.000 0.62 0.517
1.05 V- 0.000 0.67 0.667
1.06 +/- 0.000 0.69 0.687
1.03 V- 0.000 0.72 0.762
1.02 +/- 0.000 0.78 0.813
1.04 +/- 0.000 0.81 0.842
1.02 +/- 0.000 0.91 1.31
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32* 1 1.00 +/- 0.000

Initial median
Initial mean absolute deviation

1.00

= 0.286
= 0.196

2.31

No tree created.
1 1 TERMINAL NODES

Node Cases Median Mean Ad

59 0.286 0.45

Relative
Importance

LOS 100.
GRADE 76.
MOS 0.

Number Of Minimum
Categories Category
numerical

9

3 65

Number of cases in the learning sample

PRIMARY OPTION SETTINGS

136

construction rule
estimation method
tree selection
variables used

linear combinations

least absolute deviation
5-fold cross-validation

1.0 se rule
See variable importance list above,
response is variable RATE
no

SECONDARY OPTION SETTINGS

1 Minimum node size = 1

2 Minimum size below which node will not be split = 5

3 Number of surrogate splits printed = 2

4 Number of competing splits printed = 2

5 Maximum number of trees for which errors are printed = 100
6 Initial value of the complexity parameter = 0.0000E+00
7 Maximum number of cases to put into learning sample = 20000
8 Maximum number of cases to put into test sample = 20000
9 Maximum node size without sub-sampling the node = 137

10 Maximum number of surrogates used = 2

11 Maximum number of nodes allowed for in large tree = 750
(Actual maximum number of nodes = 51)

12 Max. categorical primary + surrogate splits in a tree = 1000
13 Max. linear combination splits in a tree =

(Actual number cat. + linear combination splits = 37)
(Actual number categorical competitor splits = 6)

14 Maximum height of tree = 750
(Actual maximum height of tree = 11)

Maximum size of memory available = 70000
(Actual size of memory used in run = 42053)
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OUTPUT OF THE PROGRAM : CART-CASE

| PROGRAM PURPOSE : VALIDATION OF RESULTS

INPUT FILE
NAME : TEST5
CONTENTS : GENERAL MOS CAT. 5 DATA

|

CASE NODE PREDICTED RATE
1. 1 0.2857 1.0000
2. 1 0.2857 0.1538
3. 1 0.2857 0.6667
4. 1 0.2857 1.0000
5. 1 0.2857 1.0000
6. 1 0.2857 0.4000
7. 1 0.2857 0.4000
8. 1 0.2857 0.1538
9. 1 0.2857 0.3529

10. 1 0.2857 0.1212
11. 1 0.2857 0.1935
12. 1 0.2857 0.3750
13. 1 0.2857 0.4000
14. 1 0.2857 0.4000
15. 1 0.2857 0.1176
16. 1 0.2857 0.8571
17. 1 0.2857 1.0000
18. 1 0.2857 0.4615
19. 1 0.2857 0. 1333
20. 1 0.2857 0.1429
21. 1 0.2857 0.5455
22. 1 0.2857 0.1111
23. 1 0.2857 0.2222
24. 1 0.2857 0.3333
25. 1 0.2857 1.0000
26. 1 0.2857 0.2000
27. 1 0.2857 0.5000
28. 1 0.2857 1.0000
29. 1 0.2857 0.6667
30. 1 0.2857 0.4000
31. 1 0.2857 0.2222
32. 1 0.2857 0.4000
33. 1 0.2857 0.6667
34. 1 0.2857 1.0000
35. 1 0.2857 0.6667
36. 1 0.2857 0.0588
37. 1 0.2857 0.2273
38. 1 0.2857 0.1284
39. 1 0.2857 0.1633
40. 1 0.2857 0.1290
41. 1 0.2857 0.3158

MOS
65.
65.
65.
65.
65.
65.
65.
65.
65.
65.
65.
65.
65.
65.
65.
65.
65.
65.
65.
65.
65.
65.
65.
65.
65.
65.
65.
65.
65.
65.
66.
66.
66.
66.
66.
66.
66.
66.
66.
66.
66.

GRADE
0.

1.

3.

3.
3.
3.

4.
5.

5.

5.
5.

5.
5.

5.

6.

6.

6.

6.

6.

6.

6.

6.

6.

6.

7.

7.

7.

8.

8.

8.

1.

1.

1.

1.

3.

4.

5.

5.

5.

5.

5.

LOS
20.
10.
25.
28.
29.
30.
5.

3.

4
5

6

7

8
9
6

9

20
21
22
23
24
25
26
27
20
26
29
22
27
30
14
20 .0

21
22 .0

23 .0

4
3

4
5 .0

6 .0
7 .0
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42. 1 0.2857 0.3158 66. 5. 10.0
43. 1 0.2857 1.0000 66. 5. 11.0
44. 1 0.2857 0.4828 66. 6. 5.0
45. 1 0.2857 0.0357 66. 6. 6.0
46. 1 0.2857 0.1282 66. 6. 7.0
47. 1 0.2857 0.0274 66. 6. 8.0
48. 1 0.2857 0.0299 66. 6. 9.0
49. 1 0.2857 0.0282 66. 6. 10.0
50. 1 0.2857 0.0930 66. 6. 11.0
51. 1 0.2857 0.1250 66. 6. 12.0
52. 1 0.2857 0.0769 66. 6. 13.0
53. 1 0.2857 0.0870 66. 6. 14.0
54. 1 0.2857 0.0800 66. 6. 15.0
55. 1 0.2857 0.3077 66. 6. 16.0
56. 1 0.2857 0.4000 66. 6. 18.0
57. 1 0.2857 0.5000 66. 6. 20.0
58. 1 0.2857 0.0645 66. 7. 11.0
59. 1 0.2857 0.0571 66. 7. 13.0
60. 1 0.2857 0.8387 66. 7. 20.0
61. 1 0.2857 0.1538 66. 7. 21.0
62. 1 0.2857 0.0833 66. 8. 20.0
63. 1 0.2857 0.1000 66. 8. 21.0
64. 1 0.2857 0.1000 66. 8. 22.0
65. 1 0.2857 0.3077 66. 8. 23.0
66. 1 0.2857 0.6667 66. 8. 24.0
67. 1 0.2857 0.8000 66. 8. 26.0
68. 1 0.2857 0.3333 66. 8. 30.0
69. 1 0.2857 0.1538 67. 1. 10.0
70. 1 0.2857 0.2222 67. 1. 12.0
71. 1 0.2857 0.1000 67. 5. 3.0
72. 1 0.2857 0.3846 67. 5. 4.0
73. 1 0.2857 0.2222 67. 5. . 7.0
74. 1 0.2857 0.6667 67. 5. 10.0
75. 1 0.2857 0.2857 67. 5. 16.0
76. 1 0.2857 0.2000 67. 6. 8.0
77. 1 0.2857 0.4000 67. 6. 12.0
78. 1 0.2857 0.4000 67. 6. 20.0
79. 1 0.2857 1.0000 67. 6. 26.0

OUTPUT OF THE PROGRAM : CART-TEST

| PROGRAM PURPOSE : PROVIDES A SUMMARY OF RESULTS

|

OBTAINED FROM BUILD AND CASE
|

PROGRAMS . |

WELCOME TO CART (TM) Version 1.0 November 20, 1984

Copyright (C) 1984 by
961 Yorkshire Ct.

California Statistical Software, Inc.
Lafayette, California 94549
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(415) 283-3392 All rights reserved

Summary statistics for a test sample with 79 cases.

Relative error based on tree = 0.238 +/- 0.836E-02
Initial mean absolute deviation = 0.237
Initial median = 0.308

1 1 TERMINAL NODES

LEARNING SAMPLE TEST SAMPLE
NODE CASES MEDIAN MEAN AD CASES MEDIAN MEAN AD MEAN ERROR

1 0.286 0.00E+00 ***** 0.308 0.17E-07 0.0
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OUTPUTS OF THE CART PROGRAMS USING
6TH GENERAL CATEGORIZATION DATA AS INPUT

OUTPUT OF THE PROGRAM : CART- BUILD

|
PROGRAM PURPOSE : BUILDING A REGRESSION TREE

INPUT FILE
NAME : BUILDS
CONTENTS : GENERAL MOS CAT. 6 DATA

|

TREE SEQUENCE

TREE
TERMINAL

E NODES

1 44
2 43
3 42
4 41
5 40
6 39
7 38
8 37
9 36

10 35
11 34
12 33
13 32
14 31
15 30
16 24
17 23
18 22
19 19
20 18
21 17
22 16
23 15
24 13
25 12
26 9
27 5

28 4
29 3
30" 2
31 •1

CROSS-VALIDATED RESUBSTITUTION COMPLEXITY
RELATIVE ERROR RELATIVE ERROR PARAMETER

1.21 +/- 0.000 0.43 0.0
1.21 */- 0.000 0.43 0.004
1.21 v- 0.000 0.43 0.012
1.21 /- 0.000 0.43 0.016
1.21 +/- 0.000 0.43 0.026
1.21 V- 0.000 0.43 0.026
1.21 v- 0.000 0.43 0.037
1.21 /- 0.000 0.44 0.039
1.21 /- 0.000 0.44 0.045
1.21 +/- 0.000 0.44 0.045
1.21 +/- 0.000 0.44 0.060
1.21 */- 0.000 0.45 0.063
1.21 +/- 0.000 0.45 0.066
1.20 V- 0.000 0.45 0.068
1.18 V- 0.000 0.46 0.114
1.18 +/- 0.000 0.50 0. 138
1.17 V- 0.000 0.50 0.152
1.17 */- 0.000 0.51 0. 167
1.14 V- 0.000 0.53 0.169
1.13 V- 0.000 0.54 0.202
1.14 V- 0.000 0.55 0.214
1.14 +/- 0.000 0.56 0.226
1.14 V- 0.000 0.58 0.250
1.06 V- 0.000 0.60 0.260
1.05 +/- 0.000 0.62 0.346
0.94 */- 0.000 0.67 0.379
0.94 +/- 0.000 0.75 0.448
0.94 +/- 0.000 0.78 0.500
0.92 +/- 0.000 0.82 0.988
0.97 V- 0.000 0.89 1.42
1.00 v- 0.000 1.00 2.39
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Initial median
Initial mean absolute deviation

= 0.313
= 0.185

CLASSIFICATION/REGRESSION TREE

+

I

1

Terminal Regions

PARTITIONING TREE

*

* *

* *

* *

Node 1 was split on variable LOS
A case goes left if variable LOS .le. 2.35E+01
Improvement = 2.0E-02 (C. T. = 2.3E+00)

Node Cases Median Mean Abs Dev.

* *

* *

88 28
* *

116
88
28

Competitor
1 GRADE
2 MOS

0.31
0.25
0.50

Split
1, 2. 3, 7, 8
68, 69

0.18
0.16
0.19

Improve.
2.0E-02
1.8E-03

2 TERMINAL NODES

Node Cases Median Mean Ad

1 88 0.250 0.16
2 28 0.500 0.19

Relative Number Of Minimum
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Importance Categories Category
LOS 100. numerical
GRADE 49. 10
MOS 25. 3 68

Number of cases in the learning sample

PRIMARY OPTION SETTINGS

116

construction rule
estimation method
tree selection
variables used

least absolute deviation
3-fold cross-validation

1.0 se rule
See variable importance list above,
response is variable RATE
nolinear combinations

SECONDARY OPTION SETTINGS

1 Minimum node size = 1

2 Minimum size below which node will not be split = 5

3 Number of surrogate splits printed = 2

4 Number of competing splits printed = 2

5 Maximum number of trees for which errors are printed = 100
6 Initial value of the complexity parameter = 0.0000E+00
7 Maximum number of cases to put into learning sample = 20000
8 Maximum number of cases to put into test sample = 20000
9 Maximum node size without sub-sampling the node = 117

10 Maximum number of surrogates used = 2

11 Maximum number of nodes allowed for in large tree = 750
(Actual maximum number of nodes = 45)

12 Max. categorical primary + surrogate splits in a tree = 1000
13 Max. linear combination splits in a tree =

(Actual number cat. + linear combination splits = 30)
(Actual number categorical competitor splits = 35)

14 Maximum height of tree •
= 750

(Actual maximum height of tree = 12)
Maximum size of memory available = 70000

(Actual size of memory used in run = 43747)

OUTPUT OF THE PROGRAM : CART-CASE

|
PROGRAM PURPOSE : VALIDATION OF RESULTS

INPUT FILE .

NAME : TEST6
CONTENTS : GENERAL MOS CAT. 6 DATA

|
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CASE NODE PREDICTED RATE MOS GRADE LOS
1. 1 0.2500 0.2857 68. 1. 9.0
2. 1 0.2500 0.3333 68. 1. 12.0
3. 1 0.2500 0.3333 68. 5. 3.0
4. 1 0.2500 0.2093 68. 5. 4.0
5. 1 0.2500 0.2353 68. 5. 5.0
6. 1 0.2500 0.1667 68. 5. 6.0
7. 1 0.2500 0.1905 68. 5. 7.0
8. 1 0.2500 0.3333 68. 5. 8.0
9. 1 0.2500 0.5000 68. 5. 11.0

10. 1 0.2500 0.5000 68. 5. 21.0
11. 1 0.2500 0.4444 68. 6. 5.0
12. 1 0.2500 0.0952 68. 6. 6.0
13. 1 0.2500 0.0952 68. 6. 11.0
14. 1 0.2500 0.2222 68. 6. 12.0
15. 1 0.2500 0.1818 68. 6. 15.0
16. 1 0.2500 0.5000 68. 6. 20.0
17. 1 0.2500 0.5000 68. 6. 21.0
18. 2 0.5000 1.0000 68. 6. 30.0
19. 1 0.2500 0.4444 68. 7. 20.0
20. 1 0.2500 0.2222 68. 7. 21.0
21. 1 0.2500 0.6667 68. 7. 22.0
22. 2 0.5000 0.2857 68. 7. 25.0
23. 2 0.5000 0.8000 68. 7. 26.0
24. 1 0.2500 0.3333 68. 8. 20.0
25. 1 0.2500 0.2000 68. 8. 22.0
26. 2 0.5000 0.5000 68. 8. 24.0
27. 2 0.5000 1.0000 68. 8. 25.0
28. 2 0.5000 1.0000 68. 8. 26.0
29. 1 0.2500 1.0000 69. 0. 16.0
30. 1 0.2500 0.4000 69. 1. 13.0
31. 1 0.2500 0.1538 69. 4. 2.0
32. 1 0.2500 0.1000 69. 5. 3.0
33. 1 0.2500 0.2857 69. 5. 4.0
34. 1 0.2500 0.1905 69-. 5. 5.0
35. 1 0.2500 0.2353 69. 5. 6.0
36. 1 0.2500 . 4444 69. 5. 7.0
37. 1 0.2500 0.2222 69. 5. 13.0
38. 1 0.2500 0.6667 69. 5. 21.0
39. 1 0.2500 0.2500 69. 6. 5.0
40. 1 0.2500 0.1176 69. 6. 9.0
41. 1 0.2500 0.1818 69. 6. 12.0
42. 1 0.2500 0.1333 69. 6. 21.0
43. 2 0.5000 0.2222 69. 6. 25.0
44. 2 0.5000 0.5000 69. 6. 26.0
45. 1 0.2500 0.6667 69. '7. 22.0
46. 2 0.5000 0.2222 69. 7. 30.0
47. 1 0.2500 0.5000 69. 8. 21.0
48. 1 0.2500 0.5000 70. 0. 9.0
49. 2 0.5000 1.0000 70. 1. 26.0
50. 1 0.2500 0.0769 70. 4. 1.0
51. 1 0.2500 0.1818 70. 5. 3.0
52. 1 0.2500 0.1739 70. 5. 4.0
53. 1 0.2500 0.2963 70. 5. 5.0
54. 1 0.2500 0.3750 70. 5. 6.0
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55. 1 0.2500 0.2500 70. 5. 7.0
56. 1 0.2500 0.1818 70. 5. 10.0
57. 1 0.2500 0.1538 70. 5. 11.0
58. 1 0.2500 0.2500 70. 5. 18.0
59. 1 0.2500 0.1538 70. 6. 7.0
60. 1 0.2500 0.0625 70. 6. 8.0
61. 1 0.2500 0.1212 70. 6. 9.0
62. 1 0.2500 0.0800 70. 6. 10.0
63. 1 0.2500 0.4286 70. 6. 12.0
64. 1 0.2500 0.4000 70. 6. 13.0
65. 1 0.2500 0.2500 70. 6. 18.0
66. 1 0.2500 0.6667 70. 6. 20.0
67. 1 0.2500 0.1250 70. 7. 19.0
68. 1 0.2500 0.9231 70. 7. 20.0
69. 1 0.2500 0.6667 70. 7. 21.0
70. 1 0.2500 0.6667 70. 7. 23.0
71. 2 0.5000 1.0000 70. 7. 24.0
72. 2 0.5000 0.3333 70. 7. 26.0
73. 1 0.2500 0.6667 70. 8. 20.0
74. 1 0.2500 0.1667 70. 8. 22.0
75. 1 0.2500 0.5000 70. 8. 23.0

OUTPUT OF THE PROGRAM : CART-TEST

PROGRAM PURPOSE PROVIDES A SUMMARY OF RESULTS

|

OBTAINED FROM BUILD AND CASE
PROGRAMS

.

WELCOME TO CART (TM)

Copyright (C) 1984 by
961 Yorkshire Ct.
(415) 283-3392

Version 1.0 November 20, 1984

California Statistical Software, Inc.
Lafayette, California 94549

All rights reserved

Summary statistics for a test sample with 75 cases.

Relative error based on tree = 0.188
Initial mean absolute deviation = 0.202
Initial median = 0.286

1 2 TERMINAL NODES

+/- 0.193

LEARNING SAMPLE TEST SAMPLE
NODE CASES MEDIAN MEAN AD CASES MEDIAN MEAN AD MEAN ERROR

88 0.250
28 0.500

0.16
0.19

63 0.250
12 0.800

0.16
0.31

0.16
0.31
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OUTPUTS OF THE CART PROGRAMS USING
7TH GENERAL CATEGORIZATION DATA AS INPUT

OUTPUT OF THE PROGRAM : CART-BUILD

PROGRAM PURPOSE : BUILDING A REGRESSION TREE

INPUT FILE :

NAME
CONTENTS

BUILD7
GENERAL MOS CAT. 7 DATA

TREE SEQUENCE

Termina
ee Nodes

1 23
2 21
3 20
4 19
5 17
6 14
7 13
8 9

9 7

10 6

11 4
12* 3

13 2

14 1

Cross--Validated Resubstitution Complexity
Relative Error Relative Error Parameter

0.76 +/- 0.000 0.35 0.000
0.76 +/- 0.000 0.35 0.026
0.76 +/- 0.000 0.35 0.038
0.75 V- 0.000 0.35 0.060
0.76 +/- 0.000 0.36 0.083
0.76 +/- 0.000 0.37 0.088
0.76 /- 0.000 0.39 0.300
0.75 V- 0.000 0.45 0.304
0.68 +/- 0.000 0.48 0.333
0.68 V- 0.000 0.50 0.400
0.64 +/- 0.000 0.54 0.429
0.61 +/- 0.000 0.57 0.643
0.71 V- 0.000 0.68 2.31
1.01 V- 0.000 1.00 6.86

Initial median
Initial mean absolute deviation

= 0.500
= 0.240
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CLASSIFICATION/REGRESSION TREE

Terminal Regions
1

PARTITIONING TREE

1 *

Node 1 was split on variable GRADE
A CASE GOES LEFT IF VARIABLE GRADE IS IN ( 1, 2, 3, 5,

6, 7, 8)
Improvement = 7.8E-02 (C. T. = 6.8E+00)

*

69

*

*

*

19
*

*

Node
1

2
-3

Cases
88
69
19

Surrogate
1 MOS r
2 LOS r

Competitor
1 MOS

2 LOS

Median
0.50
0.57
0.52E-01

Split
77
1.50E+00

Split
71, 72, 73,

74, 75, 76
6.50E+00

Mean Abs Dev.
0.24
0.19
0.63E-01

Assoc

.

0.63
0.10

Improve.
7.1E-02
9.5E-03

Improve

.

7. 1E-02

1.6E-02

Node 2 was split on variable MOS
A CASE GOES LEFT IF VARIABLE MOS IS IN ( 71, 72, 73, 74

* *

* 2 *

* *

* *

*

* *

Improvement =

Node Cases
2 69

-1 41
-2 28

2. 6E-02

Median
0.57
0.67
0.40

(C. T. = 2.3E+00)

Mean Abs Dev.
0.19
0. 15
0. 16

41 28
*

*
Surrogate

1 GRADE s

Split
0, 1, 2, 4, 5

Assoc. Improve.
0.07 -3.2E-08
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2 LOS s

Competitor
1 LOS
2 GRADE

6, 7, 8, 9
2.95E+01

Split
4.50E+00
2, 3, 5, (

0.03 2.7E-03

Improve

.

8.6E-03
6.7E-03

TERMINAL NODES

Node Cases

41
28
19

Median

0.667
0.400
0.522E-01

Mean Ad

0.15
0.16
0.63E-01

MOS
GRADE
LOS

Relative
Importance

100.
79.
43.

Number Of
Categories

7

10
numerical

Number of cases in the learning sample

PRIMARY OPTION SETTINGS

Minimum
Category

71

88

construction rule
estimation method
tree selection
variables used

linear combinations

least absolute deviation
10-fold cross-validation
1.0 se rule
See variable importance list above.
response is variable RATE
no

SECONDARY OPTION SETTINGS

Minimum node size
Minimum size below which node will not be split
Number of surrogate splits printed
Number of competing splits printed
Maximum number of trees for which errors are printed
Initial value of the complexity parameter
Maximum number of cases to put into learning sample

8 Maximum number of cases to put into test sample
9 Maximum node size without sub-sampling the node

10 Maximum number of surrogates used
11 Maximum number of nodes allowed for in large tree

(Actual maximum number of nodes
categorical primary + surrogate splits in a tree
linear combination splits in a tree
(Actual number cat. + linear combination splits
(Actual number categorical competitor splits

12 Max
13 Max

1

5

2

2

100
0.0000E+00
20000
20000

89
2

750
32)

1000

27)
17)
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14 Maximum height of tree
(Actual maximum height of tree

Maximum size of memory available
(Actual size of memory used in run

750
12)

= 70000
= 43216)

OUTPUT OF THE PROGRAM : CART-CASE

|
PROGRAM PURPOSE : VALIDATION OF RESULTS

INPUT FILE
NAME TEST7
CONTENTS : GENERAL MOS CAT. 7 DATA

|

CASE NODE PREDICTED RATE
1. 2 0.4000 0.5000
2. 2 0.4000 0.6667
3. 2 0.4000 0.6667
4. 2 0.4000 0.6667
5. 2 0.4000 1.0000
6. 2 0.4000 0.6667
7. 2 0.4000 1.0000
9. 1 0.6667 1.0000

10. 1 0.6667 1.0000
11. 1 0.6667 1.0000
12. 1 0.6667 1.0000
13. 1 0.6667 0.6667
14. 1 0.6667 0.6667
15. 1 0.6667 0.6667
16. 1 0.6667 0.6667
17. 1 0.6667 1.0000
18. 1 0.6667 1.0000
19. 1 0.6667 1.0000
20. 1 0.6667 0.8571
21. 1 0.6667 1.0000
22. 1 0.6667 0.6667
23. 2 0.4000 1.0000
24. 2 0.4000 0.4000
25. 2 0.4000 1.0000
26. 2 0.4000 0.4000
27. 2 0.4000 0.4000
28. 2 0.4000 0.5000
29. 2 0.4000 1.0000
30. 3 0.0522 0.0191
31. 3 0.0522 0.0302
32. 3 0.0522 0.0214
33. 3 0.0522 0.0123
34. 3 0.0522 0.0855
35. 3 0.0522 0.1600

MOS
76.
76.
76.
76.
76.
76.
76.
72.
72.
72.
72.
72.
72.
72.
72.
73.
73.
74.
74.
74.
74.
75.
75.
77.
77.
77.
77.
77.
77.
77.
77.
77.
77,
77,

GRADE
1.

5.

6.

6.

6.

7.

7.

2.

2.
3.

6.

6.

6.

6.

7.

7.

8.

6.

6.

6.

7.

3.
7.

3.

3.

3.

3.

3.

4.

4.

4.
4.

4.

4.

LOS
10.0
20.0
25.0
28.0
29.
24.
30.
20.
23.
26.0
14.0
21,
22
24.
12.
21.
21.0
12.0
20.0
24.0
28.
30,
30,
21,
23,

,0

.0

24.0
25.0
30

1

2

3

4
5
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36. 3 0.0522 0.0290 77. 4. 6.0
37. 3 0.0522 0.0769 77. 4. 7.0
38. 3 0.0522 0.0556 77. 4. 8.0
39. 3 0.0522 0.1818 77. 4. 10.0
40. 3 0.0522 0.2500 77. 4. 30.0
41. 2 0.4000 0.6667 77. 5. 9.0
42. 3 0.0522 0.2857 77. 9. 20.0
43. 3 0.0522 0.0197 77. 9. 23.0
44. 3 0.0522 0.0286 77. 9. 24.0
45. 3 0.0522 0.0438 77. 9. 25.0
46. 3 0.0522 0.1318 77. 9. 26.0
47. 3 0.0522 0.2080 77. 9. 27.0
48. 3 0.0522 0.1685 77. 9. 28.0
49. 3 0.0522 0.1719 77. 9. 29.0

OUTPUT OF THE PROGRAM : CART-TEST

| PROGRAM PURPOSE : PROVIDES A SUMMARY OF RESULTS

|

OBTAINED FROM BUILD AND CASE
|

PROGRAMS

WELCOME TO CART (TM)

Copyright (C) 1984 by
961 Yorkshire Ct.
(415) 283-3392

Version 1.0 November 20, 1984

California Statistical Software, Inc.
Lafayette, California 94549

All rights reserved

Summary statistics for a test sample with 49 cases.

Relative error based on tree = 0.180
Initial mean absolute deviation = 0.334
Initial median = 0.667

L 3 TERMINAL NODES

1.72

NODE
•- LEARNING SAMPLE
CASES MEDIAN MEAN AD CASES

TEST SAMPLE
MEDIAN MEAN AD MEAN ERROR

1 41 0.667 0.15 15
2 28 0.400 0.16 15
3 19 0.522E-01 0.63E-01 19

1.00 0.14 0.19
0.667 0.19 0.30
0.769E-01 0.73E-01 0.74E-01
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OUTPUTS OF THE CART PROGRAMS USING
8TH GENERAL CATEGORIZATION DATA AS INPUT

OUTPUT OF THE PROGRAM : CART-BUILD

PROGRAM PURPOSE : BUILDING A REGRESSION TREE

INPUT FILE :

NAME
CONTENTS

BUILD8
GENERAL MOS CAT. 8 DATA

TREE SEQUENCE

Terminal
ee Nodes

1 31
2 29
3 26
4 25
5 24
6 21
7 20
8 19
9 18

10 17
11 15
12 14
13 13
14 12
15 9

16 8
17 7

18 6
19* 3

20 2

21 1

Cross -Validated Re substitution Complexity
Relative Error Relative Error Parameter

1.14 +/- 0.000 0.27 0.000
1.11 V- 0.000 0.28 0.095
1.11 +/- 0.000 0.30 0. 103
1.11 V- 0.000 0.30 0.107
1.11 */' 0.000 0.31 0.114
1.09 v- 0.000 0.34 0. 148
1.09 */- 0.000 0.35 0.167
1.09 */- 0.000 0.36 0.172 .

1.08 */- 0.000 0.37 0.190
1.08 +/- 0.000 0.38 0.218
1.02 +/- 0.000 0.41 0.292
0.97 */- 0.000 0.44 0.357
0.95 */- 0.000 0.46 0.381
0.89 */- 0.000 0.48 0.400
0.91 V- 0.000 0.56 0.454
0.91 V- 0.000 0.59 0.467
0.96 +/- 0.000 0.62 0.500
0.98 +/- 0.000 0.67 0.810
0.98 V- 0.000 0.81 0.823
1.00 V- 0.000 0.88 1.14
1.00 +/- 0.000 1.00 1.98

Initial median
Initial mean absolute deviation

= 0.400
= 0.198

CLASSIFICATION/REGRESSION TREE
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I

Terminal Regions

1

PARTITIONING TREE

* * A case goes left if variable LOS .le. 2.75E+0
* * Improvement = 2.3E-02 (C. T. = 1.9E+00

* 1 *

* * Node Cases Median Mean Abs Dev
*

1

*

k

1 85
2 65

0.40
0.33

0.20
0.16

*

it

* -3 20 0.67 0.21

65 20
* * Surrogate Split Assoc. Improve

* * 1 GRADE s 0, 1, 2, 3, 4 05 5.3E-03
* *__. 5, 6, 7, 9

* *

* • Competitor Split Improve
* 2 * 3 : 1 GRADE 3, 6, 7, 8 1.9E-02
* * 2 MOS 80, 81 2.9E-04
* *

*

*

* *

* *

* 2 *
* *

* *

*

* *

* *

26 39

— — —*—-:«. —__*—_ —

I I I I

I I I I

Node 2 was split on variable GRADE
A case goes left if variable GRADE is in ( 3, 7)
Improvement = 1.3E-02 (C. T. = 1.1E+00)

Node Cases
2 65

-1 26
-2 39

Median
0.33
0.40
0.27

Mean Abs Dev
0.16
0.13
0.16

Surrogate
1 LOS r

Split
2.35E+01

Assoc. Improve
0.27 4.6E-03

Competitor
1 LOS

Split
1.65E+01

Improve
1.1E-02
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1 I

I

I

2 I

I

I

2 MOS 81 3.2E-03

TERMINAL NODES

Node Cases Median

26 0.400
39 0.267
20 0.667

Mean Ad

0.13
0.16
0.21

LOS
GRADE
MOS

Relative Number Of Minimum
Importance Categories Category

100. numerical
89. 10
44. 5 78

Number of cases in the learning sample

PRIMARY OPTION SETTINGS

85

construction rule
estimation method
tree selection
variables used

linear combinations

least absolute deviation
10-fold cross-validation
1.0 se rule
See variable importance list above,
response is variable RATE
no

SECONDARY OPTION SETTINGS

Minimum node size
Minimum size below which node will not be split
Number of surrogate splits printed
Number of competing splits printed
Maximum number of trees for which errors are printed
Initial value of the complexity parameter
Maximum number of cases to put into learning sample

8 Maximum number of cases to put into test sample
9 Maximum node size without sub- sampling the node

10 Maximum number of surrogates used
11 Maximum number of nodes allowed for in large tree

(Actual maximum number of nodes
categorical primary + surrogate splits in a tree
linear combination splits in a tree
(Actual number cat. + linear combination splits
(Actual number categorical competitor splits

14 Maximum height of tree
(Actual maximum height of tree

Maximum size of memory available

12 Max
13 Max

1

5

2

2

100
0.0000E+00
20000
20000

86
2

750
32)

1000

32)
29)
750
12)

70000
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(Actual size of memory used in run = 43180)

OUTPUT OF THE PROGRAM : CART-CASE

| PROGRAM PURPOSE : VALIDATION OF RESULTS

INPUT FILE
NAME : TEST8
CONTENTS : GENERAL MOS CAT. 8 DATA

|

CASE NODE PREDICTED RATE MOS GRADE LOS
1. 2 0.2667 0.6667 78. 1. 21.0
2. 2 0.2667 0.5000 78. 2. 21.0
3. 2 0.2667 0.6667 78. 2. 22.0
4. 1 0.4000 0.6667 78. 3. 24.0
5. 1 0.4000 0.5000 78. 3. 26.0
6. 3 0.6667 0.6667 78. 3. 30.0
7. 2 0.2667 . 4444 79. 1. 10.0
8. 2 0.2667 1.0000 79. 1. 20.0
9. 2 0.2667 1.0000 79. 2. 20.0

10. 2 0.2667 0.5000 79. 2. 23.0
11. 3 0.6667 0.2857 79. 3. 28.0
12. 3 0.6667 0.8000 79. 3. 30.0
13. 2 0.2667 0.1429 79. 6. 20.0
14. 2 0.2667 0.5000 79. 6. 23.0
15. 2 0.2667 1.0000 79. 6. 27.0
16. 1 0.4000 1.0000 79. i : 20.0
17. 1 0.4000 1.0000 79. 7. 23.0
18. 1 0.4000 0.6667 79. 7. 25.0
19. 3 0.6667 1.0000 79. 7. 29.0
20. 2 0.2667 0.6667 80. 1. 25.0
21. 1 0.4000 0.5000 80. 3. 24.0
22. 1 0.4000 0.6667 80. 3. 26.0
23. 2 0.2667 1.0000 80. 5. 4.0
24. 2 0.2667 1.0000 80. 5. 21.0
25. 2 0.2667 0.5000 80. 6. 20.0
26. 2 0.2667 0.6667 80. 6. 27.0
27. 1 0.4000 0.5000 80. 7. 20.0
28. 1 0.4000 0.5000 80. 7. 23.0
29. 2 0.2667 0.2500 81. 1. 13.0
30. 2 0.2667 0.1250 81. 1. 14.0
31. 2 0.2667 1.0000 81. 1. 22.0
32. 1 0.4000 0.6667 81. 3. 23.0
33. 1 0.4000 0.5000 81. 3. 26.0
34. 3 0.6667 0.3333 81. 3. 29.0
35. 3 0.6667 0.5000 81. 3. 30.0
36. 2 0.2667 1.0000 81. 5. 20.0
37. 2 0.2667 0.2857 81. 6. 21.0
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38. 1 0.4000 0.3333 81. 7. 26.0
39. 3 0.6667 1.0000 81. 7. 29.0
40. 2 0.2667 1.0000 81. 8. 20.0
41. 3 0.6667 1.0000 81. 8. 30.0
42. 2 0.2667 0.5000 82. 1. 20.0
43. 2 0.2667 1.0000 82. 1. 22.0
44. 1 0.4000 0.8000 82. 3. 20.0
45. 1 0.4000 0.4000 82. 3. 22.0
46. 1 0.4000 1.0000 82. 3. 25.0

OUTPUT OF THE PROGRAM : CART-TEST

| PROGRAM PURPOSE : PROVIDES A SUMMARY OF RESULTS

|

OBTAINED FROM BUILD AND CASE
|

PROGRAMS

WELCOME TO CART (TM)

Copyright (C) 1984 by
961 Yorkshire Ct.
(415) 283-3392

Version 1.0 November 20, 1984

California Statistical Software, Inc.
Lafayette, California 94549

All rights reserved

Summary statistics for a test sample with

Relative error based on tree =
Initial mean absolute deviation =
Initial median =

L 3 TERMINAL NODES

46 cases.

341
228
667

0.688

NODE
- LEARNING SAMPLE
CASES MEDIAN MEAN AD CASES

TEST SAMPLE
MEDIAN MEAN AD MEAN ERROR

26 0.400
39 0.267
20 0.667

0.13
0.16
0.21

15 0.667
23 0.667
8 0.800

0.17
0.26
0.25

0.26
0.43
0.25
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OUTPUTS OF THE CART PROGRAMS USING
9TH GENERAL CATEGORIZATION DATA AS INPUT

OUTPUT OF THE PROGRAM : CART- BUILD

|
PROGRAM PURPOSE : BUILDING A REGRESSION TREE

INPUT FILE
NAME : BUILD9
CONTENTS : GENERAL MOS CAT. 9 DATA

|

TREE SEQUENCE

Terminal
ee Nodes

1 26
2 25
3 24
4 23
5 22
6 21
7 20
8 19
9 18

10 15
11 12
12 11
13 10
14 7

15 6
16 5

17 4
18 3
19* 2

20 1

Cross -Vali dated Re substitution Complexity
Relative Error Relative Error Parameter

1.11 +/- 0.000 0.31 0.000
1.10 */- 0.000 0.31 0.011
1.09 V- 0.000 0.31 0.063
1.09 V- 0.000 0.32 0.068
1.08 +/- 0.000 0.32 0.083
1.09 V- 0.000 0.33 0.091
1.11 +/- 0.000 0.34 0.100
1.06 V- 0.000 0.35 0.200
1.06 V- 0.000 0.37 0.231
1.03 V- 0.000 0.42 0.237
1.04 +/- 0.000 0.47 0.281
1.09 V- 0.000 0.50 0.333
1.03 V- 0.000 0.52 0.345
1.02 +/- 0.000 0.59 0.367
0.94 V- 0.000 0.62 0.405
0.90 V- 0.000 0.67 0.678
0.92 V- 0.000 0.72 0.712
0.93 V- 0.000 0.78 0.929
0.98 V- 0.000 0.87 1.27
1.00 +/- 0.000 1.00 1.97

Initial median
Initial mean absolute deviation

= 0.400
= 0.207

CLASSIFICATION/REGRESSION TREE
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+

I

1

Terminal Regions

PARTITIONING TREE

*

* *

1 '

Node 1 was split on variable GRADE
A CASE GOES LEFT IF VARIABLE GRADE IS IN ( 0, 1, 4)

Improvement = 2.7E-02 (C. T. = 1.9E+00)

*

*

1

*

*

*

*

Node Cases
1 71

-1 7
-2 64

Median
0.40
0.00E+00
0.40

Mean Abs Dev
0.21
0.60E-01
0.19

7

*

64
*

*

*__.
1

2

Surrogate
LOS s

MOS r

Split
1.25E+01
83, 84, 85,
86, 89

Assoc

.

0.71
0.28

Improve
1.7E-02
1. 1E-02

I 11 2 :

[ 1

[ 2

Competitor
LOS
MOS

Split
1.50E+00
87, 88

Improve
2.2E-02
1.1E-02

1 2 TERMINAL NODES

Node Cases Median Mean Ad

7

64
0.O00E+OO
0.400

0.60E-01
0.19

GRADE
LOS
MOS

Relative
Importance

100.
92.
34.

Number Of
Categories

10
numerical

7

Number of cases in the learning sample

PRIMARY OPTION SETTINGS

Minimum
Category

83

71

construction rule
estimation method

least absolute deviation
5-fold cross-validation
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tree selection
variables used

linear combinations

1.0 se rule
See variable importance list above.
response is variable RATE
no

SECONDARY OPTION SETTINGS

1 Minimum node size
2 Minimum size below which node will not be split
3 Number of surrogate splits printed
4 Number of competing splits printed
5 Maximum number of trees for which errors are printed
6 Initial value of the complexity parameter
7 Maximum number of cases to put into learning sample
8 Maximum number of cases to put into test sample
9 Maximum node size without sub- sampling the node

10 Maximum number of surrogates used
11 Maximum number of nodes allowed for in large tree

(Actual maximum number of nodes
12 Max. categorical primary + surrogate splits in a tree
13 Max. linear combination splits in a tree

(Actual number cat. + linear combination splits
(Actual number categorical competitor splits

14 Maximum height of tree
(Actual maximum height of tree

Maximum size of memory available
(Actual size of memory used in run

1

5

2

2
100

0.0000E+00
20000
20000

72
2

750
27)

1000

27)
27)
750

9)
70000
42937)

OUTPUT OF THE PROGRAM : CART-CASE

PROGRAM PURPOSE : VALIDATION OF RESULTS

INPUT FILE :

NAME
CONTENTS

TEST9
GENERAL MOS CAT. 9 DATA

CASE NODE PREDICTED RATE
1. 1 0.0000 0.3333
2. 2 0.4000 0.2857
3. 2 0.4000 0.6667
4. 2 0.4000 1.0000
5. 2 0.4000 0.5000
6. 2 0.4000 1.0000
7. 2 0.4000 1.0000
a. 1 0.0000 0.5000
9. 1 0.0000 0.6667

10. 1 0.0000 0.1538
11. 2 0.4000 0.6667

MOS
84.
84.
84.
84.
84.
84.
84.
85.
85.
86.
86.

GRADE
1.

3.

6.

6.

6.

7.

8.

1.

1.

1.

5.

LOS
15.0
27.0
20.0
26.0
27.0
22.0
29.0
13.0
20.0
14.0
10.0
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12. 2 0.4000 0.6667 86. 6. 20.0
13. 2 0.4000 0.2353 86. 6. 21.0
14. 2 0.4000 0.2222 86. 6. 22.0
15. 2 0.4000 1.0000 86. 6. 29.0
16. 2 0.4000 0.6667 86. 7. 20.0
17. 2 0.4000 0.3333 86. 7. 21.0
18. 2 0.4000 0.4000 86. 7. 23.0
19. 2 0.4000 1.0000 86. 7. 28.0
20. 1 0.0000 1.0000 88. 0. 20.0
21. 2 0.4000 0.2857 88. 6. 18.0
22. 2 0.4000 0.5714 88. 6. 20.0
23. 2 0.4000 0.5000 88. 6. 21.0
24. 2 0.4000 0.6667 88. 6. 26.0
25. 2 0.4000 1.0000 89. 3. 30.0
26. 2 0.4000 0.6667 89. 6. 22.0
27. 2 0.4000 1.0000 89. 6. 23.0

OUTPUT OF THE PROGRAM CART-TEST

PROGRAM PURPOSE PROVIDES A SUMMARY OF RESULTS
OBTAINED FROM BUILD AND CASE
PROGRAMS

.

WELCOME TO CART (TM)

Copyright (C) 1984 by
961 Yorkshire Ct.
(415) 283-3392

Version 1.0 November 20, 1984

California Statistical Software, Inc.
Lafayette, California 94549

All rights reserved

Summary statistics for a test sample with 27 cases.

Relative error based on tree = 0.350
Initial mean absolute deviation = 0.235
Initial median = 0.667

1 2 TERMINAL NODES

+/- 0.882

LEARNING SAMPLE
NODE CASES MEDIAN MEAN AD

TEST SAMPLE
CASES MEDIAN MEAN AD MEAN ERROR

7 0.000E+00 0.60E-01
64 0.400 0.19

5 0.500
22 0.667

0.24
0.23

0.53
0.31
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APPENDIX J

CONSIDERED AND NEGLECTED RECORDS IN DATA FILES

NINE FILES WERE CREATED TO BE USED AS A LEARNING SAMPLES, EACH FILE

IS CORRESPONDING TO ONE OF THE GENERAL MOS CATEGORIZATION GROUPS. SOME

OF DATA AVAILABLE WERE NEGLECTED BECAUSE IT HAD ZERO LOSS RATES. THE

FOLLOWING ARE THE NUMBER OF CASES CONSIDERED AND THOSE NEGLECTED IN EACH

FILE.
GENERAL MOS CATEGORIZATION 1

MOS GRADE CONSIDERED NEGLECTED

3 1 3

3 2 2 6
3 3 1 4
3 4 8 7

3 5 13 5

3 6 23 4
3 7 16 6
3 8 12 4
3 9 10
5 14
5 1 17
5 2 1 7

5 3 2 10
5 4 4 9

5 5 12 3

5 6 20 5

5 7 15 6

5 8 12 4
5 9 1 2

10 2
10 1 3

10 2 1 5

10 3 2 7

10 4 3 9

10 5 10 5

10 6 16 8
10 7 10 11
10 8 11 4
10 9 2

TOTAL 195 182

GENERAL MOS CATEGORIZATION 2

MOS GRADE

7

CONSIDERED NEGLECTED

2 12

164



FILE: APPENDIX J Al

7 1 3 14
7 2 3 12
7 3 5 7

7 4 3 16
7 5 13 12
7 6 19 8

7 7 12 9

7 8 9 7

7 9 3

13 6

13 1 8

13 2 1 6

13 3 2 11
13 4 4 10
13 5 12 5

13 6 21 3

13 7 14 7

13 8 10 6

13 9 2

20 1 18
20 1 8 12
20 2 4 14
20 3 4 7

20 4 2 12
20 5 9 20
20 6 16 11
20 7 10 11
20 8 4 9

TOTAL 191 278

GENERAL MOS CATEGORIZATION

MOS GRADE CONSIDERED NEGLECTED

38 2

38 1 4
38 2 3

38 3 8 10
38 4 9 3

38 5 11 2

38 6 17 3

38 7 20 2

38 8 13 4
38 9 6

TOTAL 78 39

GENERAL MOS CATEGORIZATION 4

MOS GRADE CONSIDERED NEGLECTED

1 3 16
1 1 6 15
1 2 7 11
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FILE: APPENDIX J Al

1 3 9 5

1 4 2 20
1 5 12 14
1 6 20 7

1 7 14 8
1 8 9 8
1 9 1

2 1 15
2 1 1 16
2 2 5 11
2 3 10 3

2 4 1 20
2 5 12 12
2 6 19 8
2 7 12 9
2 8 7 8

16 2 15
16 1 4 14
16 2 4 12
16 3 10 5

16 4 4 19
16 5 14 12
16 6 23 4
16 7 12 9
16 8 10 6

16 9 4
19 1 17
19 1 3 14
19 2 2 12
19 3 7 6
19 4 1 15
19 5 7 16
19 6 20 7

19 7 11 9
19 8 5 11
23 9

23 1 10
23 2 1 3

23 3 2 9
23 4 1 9

23 5 5 13
23 6 7 20
23 7 5 16
23 8 3 15
24 1 10
24 1 1 10
24 2 4
24 3 5

24 4 7 3

24 5 7 16
24 6 17 11
24 7 13 11
24 8 6 12
24 9 3

28 18
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28
28
28
28
28
28
28
28

1 16
2 2 8

3 4 8

4 1 18
5 11 14
6 13 14
7 4 15
8 2 14

TOTAL

GENERAL MOS CATEGORIZATION 5

403 728

MOS

30
30
30
30
30
30
30
30
30
36
36
36
36
36
36
36
36
36
36
37
37
37
37
37
37
37
37
37

GRADE>E CONSIDERED NEGLECTI

1 16
1 5 13
2 5 8

3 6 6

4 3 21
5 7 17
6 10 17
7 9 9

8 3 5

13
1 1 14
2 2 5

3 5 7

4 2 11
5 11 3

6 14 7

7 10 11
8 9 7

9 1

2 12
1 2 12
2 1 8
3 4 5

4 1 14
5 6 18
6 12 11
7 5 13
8 9

TOTAL

GENERAL MOS CATEGORIZATION 6

MOS GRADE

136

CONSIDERED

1

2
7

293

NEGLECTED

14
13

11
16
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4 6 10 16
4 7 7 14
4 8 4 10
4 9 1

14 1 13
14 1 1 14
14 2 1 3

14 3 3 9

14 4 17
14 5 8 15
14 6 12 14
14 7 6 15
14 8 11
14 9 1

21 13
21 1 3 11
21 2 1 6

21 3 1 6

21 4 2 17
21 5 12 10
21 6 16 10
21 7 9 12
21 8 8 6

TOTAL 115 298

GENERAL MOS CATEGORIZATION 7

MOS GRADE CONSIDERED NEGLECTED

9 7

9 1 8

9 2 1 6
9 3 9

17 11
17 1 10
17 2 1 3

17 3 2
17 4 1

17 5 2 12
17 6 5 18
17 7 5 7

17 8 2
18 13
18 1 2 11
18 2 2 7

18 3 5

18 5 2 14
18 6 3 19
18 7 5 12
18 8 1 2
22 11
22 1 1 7

22 2 3

22 3 3 2
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22 4 5

22 5 3 13
22 6 5 11
22 7 2 6

22 8 10
25 13
25 1 11
25 2 1 4
25 3 4
25 4 4
25 5 4 15
25 6 4 15
25 7 1 3

25 8 1 3

26 10
26 1 7

26 2 2 6

26 3 1

26 4 3

26 5 1 15
26 6 2 13
26 7 8
26 8 1 3

39 10
39 1 9
39 2 1 10
39 3 3 10
39 4 11 5

39 5 2 7

39 6 1

39 7 1

39 9 8 4

TOTAL 88 439

GENERAL MOS CATEGORIZATION 8

MOS GRADE CONSIDERED NEGLECTED

6 1 13
6 1 2 14
6 2 2 8
6 3 6 6
6 4 1

6 5 3

6 6 1

11 3 13
11 1 4 16
11 2 2 10
11 3 5 9

11 4 4
11 5 16
11 6 4 14
11 7 6 7

11 8 1 3
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12 14
12 1 1 16
12 2 5

12 3 6 6

12 4 8

12 5 3 16
12 6 8 11
12 7 7 6
12 8 1

33 1 13
33 1 1 17
33 2 11
33 3 2 7

33 5 14
33 6 6 11
33 7 4 9

33 8 9

35 14
35 1 1 15
35 2 1 8

35 3 4 10
35 5 4
35 6 2

TOTAL 83 363

GENERAL MOS CATEGORIZATION 9

MOS GRADE CONSIDERED NEGLECT1

8 7

8 1 7

8 2 1 4
8 3 2

15 1 13
15 1 1 11
15 2 2 8
15 3 7 6

15 4 3

15 5 1 14
15 6 7 10
15 7 9 4
15 8 2 4
27 12
27 1 7

29 15
29 1 1 14
29 2 1 9

29 3 8 5

29 4 3

29 5 2 16
29 6 8 10
29 7 7 6

29 8 2 2

32 9
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32 1

32 2
32 3

32 5

32 6
32 7

32 8
34
34 1

34 3

34 4
34 5

34 6
34 7

TOTAL 66 295

11
7

6

12
12
3

2

6

4
2 9

3

1 10
3 6

3

171



LIST OF REFERENCES

1. Breiman, Leo, et. al, Classification and Regression Trees ,

Graybill, F., Wadsworth, Inc., 1984.

2. Tucker, D. D., Loss Rate Estimation in Marine Corps Officer
Manpower Models , Master's Thesis, Naval Postgraduate School,
Monterey, California, September 1985.

172



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 223Q4-6145

2. Library, Code 0142 2

Naval Postgraduate School
Monterey, California 93943-5100

3. Professor Robert R. Read, Code 55 1

Naval Postgraduate School
Monterey, California 93943-5100

4. Professor Glenn F. Lindsay, Code 55 1

Naval Postgraduate School
Monterey, California 93943-5100

5. Professor A. R. Washburn, Code 55 1

Naval Postgraduate School
Monterey, California 93943-5100

6. Amin Elseramegy^ Hamdy 2

14B, Mona St., Apt. 10
Eldoky, Giza, Egypt

7. Major D. D. Tucker 1

USMC Headquarters
MP 5 20
Washington, DC 20380

173













I

21G08if

Amin Elseramegy
CART program: the

implementation of the
CART program and its
application to esti-
mating attrition
rates.

24 JUM 87 3 1808

e

he

s

I
18

Thesis
A4343

c.l

216081*

Amin F.lseraTT|e o,
'

, '

CART program: the
implementation of the
CART program and its
application to esti-
mating attrition
rates.




